Cylindrical Rod Phosphor Structure for Laser-Driven White Lighting
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.-H.; Schubert, M.F.; Dai, Q.; Kim, J.K.; Schubert, E.F.; Piprek, J.; Park, Y. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 2007, 91, 183507. [Google Scholar] [CrossRef]
- Piprek, J. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 2010, 207, 2217–2225. [Google Scholar] [CrossRef]
- Iveland, J.; Martinelli, L.; Peretti, J.; Speck, J.S.; Weisbuch, C. Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 2013, 110, 177406. [Google Scholar] [CrossRef] [PubMed]
- Wierer, J.J.; Tsao, J.Y.; Sizov, D.S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 2013, 7, 963–993. [Google Scholar] [CrossRef]
- Liu, J.; Tam, W.S.; Wong, H.; Filip, V. Temperature-dependent light-emitting characteristics of InGaN/GaN diodes. Microelectron. Reliab. 2009, 49, 38–41. [Google Scholar] [CrossRef]
- Neumann, A.; Wierer, J.J.; Davis, W.; Ohno, Y.; Brueck, S.R.J.; Tsao, J.Y. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 2011, 19, A982–A990. [Google Scholar] [CrossRef]
- Fan, F.; Turkdogan, S.; Liu, Z.C.; Shelhammer, D.; Ning, C.Z. A Monolithic White Laser. Nat. Nanotechnol. 2015, 10, 796–803. [Google Scholar] [CrossRef]
- Luo, X.; Fu, X.; Chen, F.; Zheng, H. Phosphor self-heating in phosphor converted light emitting diode packaging. Int. J. Heat Mass Transf. 2013, 58, 276–281. [Google Scholar] [CrossRef]
- Yeh, C.-T.; Chou, Y.-I.; Yang, K.-S.; Wu, S.-K.; Wang, C.-C. Luminescence material characterizations on laser-phosphor lighting techniques. Opt. Express 2019, 27, 7226–7236. [Google Scholar] [CrossRef]
- Ma, Y.; Lan, W.; Xie, B.; Hu, R.; Luo, X. An optical-thermal model for laser-excited remote phosphor with thermal quenching. Int. J. Heat Mass Transf. 2018, 116, 694–702. [Google Scholar] [CrossRef]
- Lafont, U.; van Zeijl, H.; van der Zwaag, S. Increasing the Reliability of Solid State Lighting Systems via Self-Healing Approach: A Review. Microelectron. Reliab. 2012, 52, 71–89. [Google Scholar] [CrossRef]
- Lee, T.-X.; Chou, C.-C.; Chang, S.C. Novel remote phosphor design for laser-based white lighting application. SPIE Conf. Proc. 2016, 9954, 96–104. [Google Scholar]
- Chang, J.-K.; Cheng, W.-C.; Chang, Y.-P.; Kuo, Y.-Y.; Tsai, C.-C.; Huang, Y.-C.; Chen, L.-Y.; Cheng, W.-H. Next-generation glass-base phosphor-converted laser light engine. SPIE Conf. Proc. 2015, 9571, 957103. [Google Scholar]
- Daniels, M.; Mehl, O.; Hartwig, U. Laser-activated remote phosphor light engine for projection applications. SPIE Conf. Proc. 2015, 9578, 149–155. [Google Scholar]
- Chang, Y.-P.; Chang, J.-K.; Cheng, W.-C.; Kuo, Y.-Y.; Liu, C.-N.; Chen, L.-Y.; Cheng, W.-H. New scheme of a highly-reliable glass-based color wheel for next-generation laser light engine. Opt. Mater. Express 2017, 7, 1029–1034. [Google Scholar] [CrossRef]
- Chen, B.-M.; Ying, S.-P.; Tsai, H.-H. Remote Phosphor Structure for Laser-Driven White Lighting. IEEE Trans Electron Devices 2020, 67, 2400–2405. [Google Scholar] [CrossRef]
- Dubey, A.K.; Gupta, M.; Kumar, V.; Singh, V.; Mehta, D.S. Blue laser diode-pumped Ce YAG phosphor-coated cylindrical rod based extended white light source with uniform illumination. Laser Phys. 2019, 29, 056203. [Google Scholar] [CrossRef]
- Ikeda, Y.; Takeda, Y.; Ueno, M.; Matsuba, Y.; Heike, A.; Kawasaki, Y.; Kinoshita, J. Incoherentized highbrightness white light generated using blue laser diodes and phosphors effect of multiple scattering. J. Light Vis. Environ. 2013, 37, 95–100. [Google Scholar] [CrossRef]
- Kinoshita, J.; Ikeda, Y.; Takada, Y. Speckle-free phosphor-scattered blue light emitted out of InGaN/GaN laser diode with broadened spectral behavior for high luminance white lamp applications. IEICE Trans. Electron. 2013, 96, 1391–1398. [Google Scholar] [CrossRef]
- Ying, S.-P.; Chien, H.-H. Effect of Reassembled Remote Phosphor Geometry on the Luminous Efficiency and Spectra of White Light-Emitting Diodes with Excellent Color Rendering Property. IEEE Trans. Electron. Devices 2016, 63, 1117–1121. [Google Scholar] [CrossRef]
- Ying, S.-P.; Shen, J.-Y. Concentric ring phosphor geometry on the luminous efficiency of white-light-emitting diodes with excellent color rendering property. Opt. Lett. 2016, 41, 1989–1992. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Joo, J.Y.; Lee, S.K. Modeling of reflection-type laser-driven white lighting considering phosphor particles and surface topography. Opt. Express 2015, 23, 18872–18887. [Google Scholar] [CrossRef] [PubMed]
Cylindrical Rod Containing Yellow Phosphor | Phosphor Concentration (%) | CIE Coordinates (x, y) | CCT (K) | Luminous Flux (lm) |
---|---|---|---|---|
Without surrounding transparent layer | 0.1 | (0.2831, 0.2613) | 11,590 | 29.9 |
0.3 | (0.3603, 0.4117) | 4719 | 39.9 | |
0.5 | (0.3761, 0.4405) | 4444 | 42.1 | |
0.7 | (0.3817, 0.4503) | 4360 | 41.9 | |
0.9 | (0.3872, 0.4574) | 4276 | 40.7 | |
With surrounding transparent layer | 0.1 | (0.3019, 0.2996) | 7902 | 30.6 |
0.3 | (0.3502, 0.3922) | 4946 | 41.4 | |
0.5 | (0.3677, 0.4244) | 4578 | 43.3 | |
0.7 | (0.3782, 0.4426) | 4405 | 42.3 | |
0.9 | (0.3856, 0.4532) | 4292 | 41.5 |
Cylindrical Rod Containing Mixed Yellow and Red Phosphors | Y:R Ratio | CIE Coordinates (x, y) | CCT (K) | Luminous Flux (lm) |
---|---|---|---|---|
Without surrounding transparent layer | 3:1 | (0.4591, 0.3762) | 2263 | 29.3 |
6:1 | (0.4248, 0.3957) | 3196 | 35.6 | |
9:1 | (0.4027, 0.4022) | 3695 | 38.0 | |
12:1 | (0.4101, 0.3996) | 3863 | 39.5 | |
15:1 | (0.3946, 0.4017) | 4089 | 41.2 | |
With surrounding transparent layer | 3:1 | (0.4431, 0.3665) | 2493 | 30.2 |
6:1 | (0.4103, 0.3805) | 3264 | 36.7 | |
9:1 | (0.3951, 0.3888) | 3852 | 39.7 | |
12:1 | (0.3859, 0.3902) | 4096 | 41.1 | |
15:1 | (0.3877, 0.3914) | 4524 | 42.0 | |
Surrounding red phosphor layer around central yellow cylindrical rod | 3:1 | (0.3915, 0.3981) | 3867 | 37.5 |
6:1 | (0.3825, 0.407) | 4133 | 40.1 | |
9:1 | (0.3781, 0.4125) | 4267 | 40.6 | |
12:1 | (0.3762, 0.4142) | 4321 | 41.4 | |
15:1 | (0.3741, 0.4151) | 4376 | 42.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.-M.; Ying, S.-P.; Huang, H.-L.; Cheng, Y.-C. Cylindrical Rod Phosphor Structure for Laser-Driven White Lighting. Coatings 2022, 12, 1637. https://doi.org/10.3390/coatings12111637
Chen B-M, Ying S-P, Huang H-L, Cheng Y-C. Cylindrical Rod Phosphor Structure for Laser-Driven White Lighting. Coatings. 2022; 12(11):1637. https://doi.org/10.3390/coatings12111637
Chicago/Turabian StyleChen, Bing-Mau, Shang-Ping Ying, Hsuan-Li Huang, and Yu-Chieh Cheng. 2022. "Cylindrical Rod Phosphor Structure for Laser-Driven White Lighting" Coatings 12, no. 11: 1637. https://doi.org/10.3390/coatings12111637
APA StyleChen, B.-M., Ying, S.-P., Huang, H.-L., & Cheng, Y.-C. (2022). Cylindrical Rod Phosphor Structure for Laser-Driven White Lighting. Coatings, 12(11), 1637. https://doi.org/10.3390/coatings12111637