# Study on Vibration Compaction Energy of Basement Material

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

_{0,1}—value of UVCE (J/m

^{3});

_{0,2}—value of UACE (J/m

^{3});

## 2. Materials and Methodology

#### 2.1. Materials

#### 2.2. Methodology

#### 2.2.1. Indoor Vibration Compaction

#### 2.2.2. Self-Energy of the Machinery (${E}_{self}$)

^{2});

^{2}).

#### 2.2.3. Transmitted Energy from Machinery to Compacted Material (${E}_{t}$)

## 3. Results and Discussion

#### 3.1. Energy of Compaction Machine

#### 3.2. Transmitted Energy from Machinery to Material (${E}_{t}$)

#### 3.2.1. First Two Cycles

#### 3.2.2. Five Normal Cycles

#### 3.2.3. Whole Compaction Process

#### 3.3. The Energy Stored by Compaction Materials ${E}_{s}$

#### 3.4. The Analysis on Three Kinds of Energy

## 4. Conclusions

- (1)
- In time order, compaction processes can be divided into three stages: the initial stage, the normal stage, and the stable stage. In compaction processes, the hysteresis curve of the three stages becomes more stable and dense, whereas the indenter-displacement speed becomes slow.
- (2)
- There are three kinds of energy in the vibration-compaction process: the mechanical energy itself (${E}_{self}$), the energy transmitted from the machinery to the compacted material (${E}_{t}$), and the energy stored by the compaction materials (${E}_{s}$), with energy values of 40 J, 2500 (2520) J, and 38 J, respectively.
- (3)
- In each compaction process, the energy transmitted from the machinery to the compacted material (${E}_{t}$) is only 1–1.8 J.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Wu, H. Study on Compaction Mechanism and Construction Technology of Highway Cohesive Soil Subgrade Filling. Master’s Thesis, Fuzhou University, Fuzhou, China, 2020. [Google Scholar]
- Feng, R.; Wang, Y.; Xie, Y. Test on Vibrated Compaction Properties of Coarse-grained Soil. China J. Highw. Transp.
**2007**, 5, 19–23. [Google Scholar] - Zhou, H.; Guo, Y.; Zhang, G. Study on relation between compaction energy and vibration compaction mechanical parameters. J. Shandong Jianzhu Univ.
**2017**, 32, 6. [Google Scholar] - Gurtug, Y.; Sridharan, A. Compaction behaviour and prediction of its characteristics of fine grained soils with particular reference to compaction energy. Proc. Soc. Constr. Eng.
**2004**, 44, 27–36. [Google Scholar] [CrossRef] [Green Version] - Hu, L. Study on Structural Types and Composition Design of Semi-Rigid Base Materials. Ph.D. Thesis, Chang’an University, Xi’an, China, 2004. [Google Scholar]
- An, Z.; Liu, T.; Zhang, Q.; Zhang, Z.; Huangfu, Z.; Li, Q. Vibration compaction process model for rockfill materials considering viscoelastic-plastic deformation. Autom. Constr.
**2021**, 131, 103889. [Google Scholar] [CrossRef] - Bratu, P.; Dobrescu, C. Dynamic response of Zener-modelled linearly viscoelastic systems under harmonic excitation. Symmetry
**2019**, 11, 1050. [Google Scholar] [CrossRef] [Green Version] - Paulmichl, I.; Furtmueller, T.; Adam, C.; Adam, D. Numerical simulation of the compaction effect and the dynamic response of an oscillation roller based on a hypoplastic soil model. Soil Dyn. Earthq. Eng.
**2020**, 132, 106057. [Google Scholar] [CrossRef] - Wang, M.; Yu, Q.; Xiao, Y. Experimental investigation of macro- and meso-scale compaction characteristics of unbound permeable base materials. Chin. J. Rock Mech. Eng.
**2022**. network preprint. [Google Scholar] - Wang, N. Numerical Simulation and Mechanical Analysis of High Filling Embankment Construction Method. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2019. [Google Scholar]
- Jia, J.; Yang, X.; Liu, H. Compaction Characteristics of Paver Tamper to Mixture Considering Shock Load. J. Southwest Jiaotong Univ.
**2022**. network preprint. [Google Scholar] - Massarsch, K.R.; Fellenius, B.H. Evaluation of Vibratory Compaction by In Situ Tests. J. Geotech. Geoenviron. Eng.
**2019**, 145, 05019012. [Google Scholar] [CrossRef] - Jiao, G.D.; Zhao, S.P.; Ma, W.; Kong, X.B. Evolution laws of hysteresis loops of frozen soil under cyclic loading. Chin. J. Geotech. Eng.
**2013**, 35, 1343–1349. [Google Scholar] - Aloisio, A.; Alaggio, R.; Köhler, J.; Fragiacomo, M. Extension of Generalized Bouc-Wen Hysteresis Modeling of Wood Joints and Structural Systems. J. Eng. Mech.
**2020**, 146, 04020001. [Google Scholar] [CrossRef] - Triantafyllidis, T.; Kimmig, I. A simplified model for vibro compaction of granular soils. Soil Dyn. Earthq. Eng.
**2019**, 122, 261–273. [Google Scholar] [CrossRef] - Cao, Z. Road Engineering Properties of Metamorphic Soft Rock used as Embankment Fillng in Qin-Ba MountainAreas and Vibration Compaction Technology Research. Ph.D. Thesis, Chang’an University, Xi’an, China, 2013. (In Chinese). [Google Scholar]
- Liu, D.; Li, Z.; Liu, J. Experimental study on real-time control of roller compacted concrete dam compaction quality using unit compaction energy indices. Constr. Build. Mater.
**2015**, 96, 567–575. [Google Scholar] [CrossRef] - Ye, Y.; Cai, D.; Zhu, H.; Wei, S.; Yang, W.; Gen, L. Research on the continuous inspection and control index of new high speed railway subgrade compaction based on vibration energy. Tiedao Xuebao/J. China Railw. Soc.
**2020**, 42, 127–132. (In Chinese) [Google Scholar] - Yang, C.; Zhang, L.; Su, K. Research on dynamic response of railway subgrade filling material under vibration compaction based on VMD-Hilbert transform. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng.
**2022**, 41, 2991–3001. [Google Scholar] - Susante, P.V.; Mooney, M.A. Capturing nonlinear vibratory roller compactor behavior through lumped parameter modeling. J. Eng. Mech.
**2008**, 134, 684–693. [Google Scholar] [CrossRef] [Green Version] - Javier, G.C.; Daniel, G.V.; Jaime, D. Nonlinear modelling and simulation of vibrocompaction processes. Int. J. Non-Linear Mech.
**2018**, 102, 101–111. [Google Scholar] - Imran, S.A.; Barman, M.; Nazari, M.; Commuri, S.; Zaman, M.; Singh, D. Continuous monitoring of subgrade stiffness during compaction. Transp. Res. Procedia
**2016**, 17, 617–625. [Google Scholar] [CrossRef] - Wang, L. Evaluation of vibratory compaction capacity and compactability of road base materials. J. Tongji Univ. (Nat. Sci. Ed.)
**2013**, 41, 203–207. [Google Scholar] - Pan, L. Study on Quality Control of Cement Stabilized Macadam Base under Vertical Vibration Compaction. Master’s Thesis, Hebei University, Baoding, China, 2021. [Google Scholar]
- Su, G. Study on Vibration Forming Test and Application of Cement Stabilized Macadam. Master’s Thesis, South China University of Technology, Guangzhou, China, 2018. [Google Scholar]
- Kloubert, H.J.; Americas, B. Intelligent Soil and Asphalt Compaction Technology. In Proceedings of the 85th TRB Annual Meeting, Washington, DC, USA, 22–26 January 2006; pp. 1–10. [Google Scholar]
- Massarsch, K.R. Effects of Vibratory Compaction. TransVib 2002. International Conference on Vibratory Pile Driving and Deep Soil Compaction. Louvain-la-Neuve. Keynote Lecture. 2002, pp. 33–42. Available online: https://www.researchgate.net/publication/292792536_Effects_of_vibratory_compaction; https://www.researchgate.net/publication/292792536 (accessed on 7 September 2022).

**Figure 2.**Indoor vibration-compaction mechanic structure. 1—Mechanics frame; 2—eccentric block; 3—indenter; 4—compaction barrels; 5—electric motor.

Index | Residue (%) (80 μm) | Initial Setting Time | Final Setting Time | 3D Strength (MPa) | |
---|---|---|---|---|---|

Compression | Flexural | ||||

cement | 7.1 | 3 h 12 min | 6 h 53 min | 20.2 | 4.7 |

Working Conditions | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|

Up counter Weight number | 1 | 1 | 1 | 1 | 1 | 1 |

Up counter Weight number | 3 | 3 | 3 | 3 | 3 | 3 |

Eccentric block angle/° | 0 | 30 | 60 | 90 | 120 | 150 |

Frequency/(Hz) | 28 | 28 | 28 | 28 | 28 | 28 |

Excitation force/N | 6862.144 | 6630.955 | 5956.738 | 4888.691 | 3509.757 | 1959.144 |

Static eccentricity/(N×m) | 0.22171 | 0.21424 | 0.19246 | 0.15795 | 0.11340 | 0.06330 |

${\phi}_{0}$/° | 409.117 | 399.315 | 373.8859 | 335.3064 | 274.3382 | 124.2212 |

$\phi $/° | 423.364 | 414.069 | 390.355 | 355.515 | 303.099 | 183.761 |

V/(m/s) | 0.46614 | 0.50815 | 0.57405 | 0.55873 | 0.38054 | 0.03919 |

E/J | 22.429 | 27.63458 | 36.857 | 34.665 | 14.676 | 2.6043 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhou, H.; Guo, Y.; Xu, Q.; Zhang, G.; Wang, Z.
Study on Vibration Compaction Energy of Basement Material. *Coatings* **2022**, *12*, 1495.
https://doi.org/10.3390/coatings12101495

**AMA Style**

Zhou H, Guo Y, Xu Q, Zhang G, Wang Z.
Study on Vibration Compaction Energy of Basement Material. *Coatings*. 2022; 12(10):1495.
https://doi.org/10.3390/coatings12101495

**Chicago/Turabian Style**

Zhou, Hao, Yongjian Guo, Qiang Xu, Guixia Zhang, and Zhen Wang.
2022. "Study on Vibration Compaction Energy of Basement Material" *Coatings* 12, no. 10: 1495.
https://doi.org/10.3390/coatings12101495