Study on the Performance of Ag-Cu Bimetal SERS Substrate
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Instruments
2.2. Preparation of SERS-Active Substrates
2.3. SERS Measurement
2.4. The Theoretical Analysis
3. Results and Discussion
3.1. Screening Substrate
3.2. Surface Morphology and Chemical Composition
3.3. Comparison of Reproducibility and Homogeneity of AgCu@MW-20 and Ag@Cu@MW-3 Substrates
3.4. Three-Dimensional Finite-Difference Time-Domain Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Ru, E.C.; Etchegoin, P.G. Single-molecule surface-enhanced raman spectroscopy. Annu. Rev. Phys. Chem. 2012, 63, 65–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Hao, Z.C.; Cao, H.J.; Guo, L.T.; Cao, H.W.; Li, N.; Yang, Y.F.; Jiao, T.F.; Liu, H.L.; Wang, M.L. Acupressure mat-like nanostructure with improved SERS performance. Opt. Laser Technol. 2022, 158, 107765. [Google Scholar] [CrossRef]
- Guo, L.T.; Cao, H.W.; Cao, L.P.; Yang, Y.F.; Wang, M.L. SERS study of wheat leaves substrates with two different structures. Opt. Commun. 2022, 510, 127921. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Li, J.; Zhang, M.X.; Song, P.; Liu, X.M.; Ding, Y. Universal and simple MoO3 substrate for identification of SERS enhancement mechanism. J. Raman Spectrosc. 2021, 52, 7. [Google Scholar] [CrossRef]
- Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Long, Y.T.; Li, H.; Du, Z.J.; Geng, M.M.; Liu, Z.R. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation. J. Colloid Interf. Sci. 2021, 581, 698–708. [Google Scholar] [CrossRef]
- Kneipp, K.; Kneipp, H.; Kneipp, J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 2006, 39, 443–450. [Google Scholar] [CrossRef]
- Hao, Z.S.; Li, N.; Cao, H.J.; Guo, L.T.; Cao, H.W.; Cao, L.P.; Liu, H.L.; Jiao, T.F.; Wang, M.L. Modified Ag nanoparticles on the regular array structure to improve the optical properties. J. Lumin. 2022, 243, 118684. [Google Scholar] [CrossRef]
- Yang, S.S.; Liu, G.Q.; Meng, L.P.; Wang, X.; Xiong, Y.; Luo, Q.; Feng, S.J. Gap-dependent SERS effect of ordered composite plasmonic nanoparticle arrays and its application for detection of sodium saccharin. Opt. Mater. 2021, 112, 110788. [Google Scholar] [CrossRef]
- Pal, A.K.; Mohan, D.B. SERS enhancement, sensitivity and homogeneity studies on bi-metallic Ag-Cu films through tuning of broad band SPR towards red region. J. Alloys Compd. 2017, 698, 460–468. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, X.; Zhang, Y. Highly Ordered Ag/Cu Hybrid Nanostructure Arrays for Ultrasensitive Surface-Enhanced Raman Spectroscopy. Adv. Mater. Interfaces 2016, 3, 1600115. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, P.L.; Shen, Q.; Ahmed, S.A.; Pan, X.T.; Liu, H.L.; Ding, X.L.; Li, J.; Wang, K.; Xia, X.H. Probing Multidimensional Structural Information of Single Molecules Transporting through a Sub-10 nm Conical Plasmonic Nanopore by SERS. Anal. Chem. 2021, 94, 34. [Google Scholar] [CrossRef]
- Xia, M.; Qiao, K.; Cheng, Z.Y.; Xie, Y.H. Multiple layered metallic nanostructures for strong surface-enhanced Raman spectroscopy enhancement. Appl. Phys. Express 2016, 9, 065001. [Google Scholar] [CrossRef]
- Abramczyk, H.; Brozek-Pluska, B. Raman Imaging in Biochemical and Biomedical Applications. Diagnosis and Treatment of Breast Cancer. Chem. Rev. 2013, 113, 5766–5781. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Seong, N.H.; Dlott, D.D. Measurement of the distribution of site enhancements in surface-enhanced raman scattering. Science 2008, 321, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Li, H.C.; Huang, X.Z.; Wang, N.; Zhu, L.H. Highly Sensitive and Stable Copper-Based SERS Chips Prepared by a Chemical Reduction Method. Nanomaterial 2021, 11, 2770. [Google Scholar] [CrossRef]
- Gong, C.; Leite, M.S. Noble metal alloys for plasmonics. ACS Photonics 2016, 3, 507–513. [Google Scholar] [CrossRef]
- Gong, C.; Dias, M.R.S.; Wessler, G.C.; Taillon, J.A.; Salamanca-Riba, L.G.; Leite, M.S. Near-field optical properties of fully alloyed noble metal nanoparticles. Adv. Opt. Mater. 2016, 5, 1600568. [Google Scholar] [CrossRef]
- Yan, X.Y.; Wang, M.L.; Sun, X.; Wang, Y.H.; Shi, G.C.; Ma, W.L.; Hou, P. Sandwich-like Ag@Cu@CW SERS substrate with tunable nanogaps and component based on the Plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Appl. Surf. Sci. 2019, 479, 879–886. [Google Scholar] [CrossRef]
- Yue, T.; Hua, Z.; Linlin, X.; Ming, C.; Feng, C. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced raman scattering activity for ultra-sensitive triphenylmethane dyes detection. Opt. Lett. 2018, 43, 635–638. [Google Scholar]
- Li, R.; Li, Y.; Han, J.; Huang, M. In situ sers monitoring of plasmonic nano-dopants during photopolymerization. Opt. Lett. 2017, 42, 1712. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, S.; Zhang, H.; Wang, D.; Chen, M. Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced raman scattering spectroscopy. Opt. Express 2017, 25, 7408. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Chen, S.Y.; Song, J.M.; Chen, I.G.; Lee, H.Y. Thermal stability of Cu@Ag core–shell nanoparticles. Corros. Sci. 2013, 74, 123–129. [Google Scholar] [CrossRef]
- Chen, K.T.; Ray, D.; Peng, Y.H.; Hsu, Y.C. Preparation of Cu–Ag core–shell particles with their anti-oxidation and antibacterial properties. Curr. Appl. Phys. 2013, 2, 5372–5381. [Google Scholar] [CrossRef]
- Rao, V.K.; Ghildiyal, P.; Radhakrishnan, T.P. In situ fabricated Cu–Ag nanoparticle-embedded polymer thin film as an efficient broad spectrum sers substrate. J. Phys. Chem. C 2017, 121, 1339–1348. [Google Scholar] [CrossRef]
- Bao, G.; Xu, Y.; Huang, L.; Lu, X.; Zhang, L.; Fang, Y. Strengthening effect of Ag precipitates in Cu–Ag alloys: A quantitative approach. Mater. Res. Lett. 2016, 4, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Rtimi, S.; Sanjines, R.; Pulgarin, C.; Kiwi, J. Microstructure of Cu–Ag uniform nanoparticulate films on polyurethane 3d catheters: Surface properties. ACS Appl. Mater. Inter. 2016, 8, 56–63. [Google Scholar] [CrossRef]
- Giordano, M.C.; Foti, A.; Messina, E.; Gucciardi, P.G.; Comoretto, D.; Francesco, B.D.M. Sers amplification from self-organized arrays of plasmonic nanocrescents. ACS. Appl. Mater. Inter. 2016, 8, 6629–6638. [Google Scholar] [CrossRef]
- Cheng, C.; Yan, B.; Wong, S.M.; Li, X.; Zhou, W.; Yu, T.; Shen, Z.; Yu, H.; Fan, H.J. Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays. ACS Appl. Mater. Inter. 2010, 2, 1824–1828. [Google Scholar] [CrossRef]
- Kodiyath, R.; Papadopoulos, T.A.; Wang, J.; Combs, Z.A.; Li, H.; Brown, R.J.C. Silver-decorated cylindrical nanopores: Combining the third dimension with chemical enhancement for efficient trace chemical detection with sers. J. Phys. Chem. C 2012, 116, 13917–13927. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, Z.; Jia, L.; Song, P.; Mei, L.; Bai, L.; Liu, Y. Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate. Appl. Surf. Sci. 2017, 403, 29–34. [Google Scholar] [CrossRef]
- Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal. Chem. 2017, 89, 2424–2431. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.W.; Guo, L.T.; Sun, Z.; Jiao, T.F.; Wang, L.M. Surface-enhanced fluorescence and application study based on Ag-wheat leaves. Chin. Phys. B 2022, 31, 037803. [Google Scholar] [CrossRef]
- Puchowicz, D.; Giesz, P.; Kozanecki, M.; Cieślak, M. Surface-enhanced raman spectroscopy (sers) in cotton fabrics analysis. Talanta 2019, 195, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Zhao, Z.X.; Qiu, Z.; Luo, Y.F.; Zhu, Y.C. Modeling effectiveness and identification of multi-scale objects in farmland soils with improved Yee-FDTD methods. Int. J. Agr. Biol. Eng. 2020, 13, 150–158. [Google Scholar] [CrossRef]
- Law, Y.M.; Marques, A.N.; Nave, J.C. Treatment of Complex Interfaces for Maxwell’s Equations with Continuous Coefficients Using the Correction Function Method. J. Sci. Comput. 2020, 82, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Gai, H.F.; Wang, J.; Tian, Q. Modified Debye model parameters of metals applicable for broadband calculations. Appl. Optics 2007, 46, 2229–2233. [Google Scholar] [CrossRef]
- Lee, C.; Robertson, C.S.; Nguyen, A.H.; Kahraman, M.; Wachsmann-Hogiu, S. Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity. Sci. Rep. 2015, 5, 11644. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.F.; Wu, D.Y.; Zhu, H.P.; Zhao, L.B.; Liu, G.K.; Ren, B.; Tian, Z.Q. Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Phys. Chem. Chem. Phys. 2012, 14, 8485–8497. [Google Scholar] [CrossRef]
- Xu, D.; Kang, W.; Yang, W.; Zhang, S.; Chen, J. Synthesis of centimeter level AgCu alloy nanowires via a solid-state ionics method and their sers effect. J Alloys Compd. 2017, 725, 248–252. [Google Scholar] [CrossRef]
- Wan, X. Research of Moth Wings’ Surface Superhydrophobicity and Fabrication of Biomimetic Surfaces. Ph.D. Thesis, Jilin University, Jilin, China, 2012. [Google Scholar]
- Wang, Y.H.; Wang, M.L.; Sun, X.; Shi, G.C.; Zhang, J.Z.; Ma, W.L.; Ren, L.J. Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin. Opt. Express. 2018, 26, 22168–22181. [Google Scholar] [CrossRef] [PubMed]
- Cheea, S.S.; Lee, J.H. Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. J. Mater. Chem. C 2014, 2, 5372–5381. [Google Scholar] [CrossRef]
- de la Hoz, J.M.M.; Tovar, R.C.; Balbuena, P.B. Size effect on the stability of Cu-Ag nanoalloys. Mol. Simulat. 2009, 35, 785–794. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008, 154, 337–346. [Google Scholar] [CrossRef]
- Houas, A.; Lachheb, H.; Kisibi, M.; Elaloui, E.; Herrmann, J.M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B-Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zheng, Y.H.; Liu, X.; Lu, W.; Dai, J.Y.; Lei, D.Y.; MacFarlane, D.R. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced raman spectroscopy. Adv. Mater. 2015, 27, 1090–1096. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Yan, X.; Li, N.; Shen, L.; Wang, M. Study on the Performance of Ag-Cu Bimetal SERS Substrate. Coatings 2022, 12, 1457. https://doi.org/10.3390/coatings12101457
Song X, Yan X, Li N, Shen L, Wang M. Study on the Performance of Ag-Cu Bimetal SERS Substrate. Coatings. 2022; 12(10):1457. https://doi.org/10.3390/coatings12101457
Chicago/Turabian StyleSong, Xiaolong, Xiaoya Yan, Na Li, Lin Shen, and Mingli Wang. 2022. "Study on the Performance of Ag-Cu Bimetal SERS Substrate" Coatings 12, no. 10: 1457. https://doi.org/10.3390/coatings12101457
APA StyleSong, X., Yan, X., Li, N., Shen, L., & Wang, M. (2022). Study on the Performance of Ag-Cu Bimetal SERS Substrate. Coatings, 12(10), 1457. https://doi.org/10.3390/coatings12101457