Effect of Reversed Austenite on Mechanical Properties of ZG06Cr13Ni4Mo Repair Welded Joint
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure of Repair Welded Joint
3.1.1. XRD Phase Detection and Analysis
3.1.2. Metallographic Microscopic Analysis
3.2. Mechanical Properties of the Welded Joint Area
3.2.1. Tensile Test
3.2.2. Impact Test
4. Discussion
5. Conclusions
- After repair welding of ZG06Cr13Ni4Mo, the phase composition of the welded joint changes from martensite alone to martensite and a small amount of reversed austenite. Reversed austenite distributes at the martensite boundary of a block in a fine strip shape and increases with the number of welding repairs. The content of reversed austenite in twice repair welding is larger than that in once repair welding, and the WM is larger than that in the HAZ.
- Within the test range, repair welding can refine the microstructure of the welded joint. The microstructure of a twice repair welding joint is finer than that of a once repair welding joint and finer than that of the original casting (compared with the original casting, the martensite in the WM is refined by 45.2% and 65.1%, respectively). The microstructure of the WM is thinner than that of the HAZ (in once and twice repair welded joints, the microstructure size of the WM is 63.7% and 73.3% of the HAZ, respectively). Reversed austenite is finer than martensite (in WM, reversed austenite is about 50% of martensite size).
- In the test range, the production of reversed austenite plays a positive role in plasticity and toughness. The yield strength, elongation and reduction of the area gradually increased. The impact energy of the twice repair welding is greater than that of the once repair welding (the WM impact energy increases by about 30 J at the same temperature), and the impact energy of the WM is greater than that of the HAZ (at −20 °C, the WM increases by 88% and 120% compared with HAZ, respectively.).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koistinen, D.; Marburger, R. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 1959, 7, 59–60. [Google Scholar] [CrossRef]
- Taban, E.; Deleu, E.; Dhooge, A.; Kaluc, E. Laser welding of modified 12% Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties. Mater. Des. 2009, 30, 1193–1200. [Google Scholar] [CrossRef]
- Wang, P.; Lu, S.; Li, D.; Kang, X.; Li, Y. Investigation on phase transformation of low carbon martensitic stainless steel ZG06Cr13Ni4Mo in tempering process with low heating rate. Acta Metall. Sin. 2008, 44, 681–685. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, Y.; Yang, J.; Emori, W.; Li, J. Effects of nitric acid passivation on the corrosion behavior of ZG06Cr13Ni4Mo stainless steel in simulated marine atmosphere. Mater. Corros. 2020, 71, 1576–1590. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Rong, L.; Li, Y. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe–13%Cr–4%Ni–Mo low carbon martensite stainless steels. Mater. Sci. Eng. A 2011, 528, 4075–4079. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Lin, C.-M.; Tsai, H.-L.; Cheng, C.-D.; Yang, C. Effect of repeated weld-repairs on microstructure, texture, impact properties and corrosion properties of AISI 304L stainless steel. Eng. Fail. Anal. 2012, 21, 9–20. [Google Scholar] [CrossRef]
- Paquin, M.; Thibault, D.; Bocher, P.; Lévesque, J.-B.; Verreman, Y.; Shinozaki, K. Assessment of cold cracking tests for low transformation temperature martensitic stainless steel multipass welds. Weld. World 2015, 59, 521–532. [Google Scholar] [CrossRef]
- Thibault, D.; Bocher, P.; Thomas, M.; Gharghouri, M.; Côté, M. Residual stress characterization in low transformation temperature 13%Cr–4%Ni stainless steel weld by neutron diffraction and the contour method. Mater. Sci. Eng. A 2010, 527, 6205–6210. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shahid, M.; Abbas, M. Effect of multiple repair welding on mechanical performance and corrosion resistance of quenched and tempered 30CrMnSiA steel. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 1233–1243. [Google Scholar] [CrossRef]
- De Sanctis, M.; Valentini, R.; Lovicu, G.; Dimatteo, A.; Ishak, R.; Migliaccio, U.; Montanari, R.; Pietrangeli, E. Microstructural evolution during tempering of 16Cr-5Ni stainless steel: Effects on final mechanical properties. Mater. Sci. Forum 2013, 762, 176–182. [Google Scholar] [CrossRef]
- Enerhaug, J.; Steinsmo, U.; Grong, Ø. Factors affecting initiation of pitting corrosion in super martensitic stainless steel weldments. Sci. Technol. Weld. Join. 2001, 6, 330–338. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, K.Y.; Ye, D.; Li, J.; Li, Z.D.; Li, S.H.; Su, J.; Yong, Q.L.; Han, X.C. Effect of heat treatment on reversed austenite in Cr15 super martensitic stainless steel. J. Iron Stell Res. Int. 2013, 20, 61–65. [Google Scholar] [CrossRef]
- Mirakhorli, F.; Cao, X.; Pham, X.-T.; Wanjara, P.; Fihey, J. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process. Mater. Charact. 2017, 123, 264–274. [Google Scholar] [CrossRef]
- Zheng, H.; Ye, X.; Li, J.; Jiang, L.; Liu, Z.; Wang, G.; Wang, B. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr–Ni stainless steel. Mater. Sci. Eng. A 2010, 527, 7407–7412. [Google Scholar] [CrossRef]
- Amrei, M.M.; Monajati, H.; Thibault, D.; Verreman, Y.; Germain, L.; Bocher, P. Microstructure characterization and hardness distribution of 13Cr4Ni multipass weld metal. Mater. Charact. 2016, 111, 128–136. [Google Scholar] [CrossRef]
- Xu, D.-K.; Liu, Y.-C.; Ma, Z.-Q.; Li, H.-J.; Yan, Z.-S. Structural refinement of 00Cr13Ni5Mo2 supermartensitic stainless steel during single-stage intercritical tempering. Int. J. Miner. Met. Mater. 2014, 21, 279–288. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Y.; Zhao, J. Elastoplastic fracture analysis of the P91 steel welded joint under repair welding thermal shock based on XFEM. Metals 2020, 10, 1285. [Google Scholar] [CrossRef]
- Shojaati, M.; Bozorg, S.F.K.; Vatanara, M.; Yazdizadeh, M.; Abbasi, M. The heat affected zone of X20Cr13 martensitic stainless steel after multiple repair welding: Microstructure and mechanical properties assessment. Int. J. Press. Vessel. Pip. 2020, 188, 104205. [Google Scholar] [CrossRef]
- Zhang, G.; Tong, X.; Wu, G.; Zhang, L.; Sui, H.; Zhang, X. Research on the post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy. Mater. Sci. Eng. A 2021, 821, 141577. [Google Scholar] [CrossRef]
- Carpenter, K.R.; Dissanayaka, P.; Sterjovski, Z.; Li, H.; Donato, J.; Gazder, A.A.; Van Duin, S.; Miller, D.; Johansson, M. The effects of multiple repair welds on a quenched and tempered steel for naval vessels. Weld. World 2021, 65, 1997–2012. [Google Scholar] [CrossRef]
- Thibault, D.; Bocher, P.; Thomas, M. Residual stress and microstructure in welds of 13%Cr–4%Ni martensitic stainless steel. J. Mater. Process. Technol. 2009, 209, 2195–2202. [Google Scholar] [CrossRef]
- Bilmes, P.; Solari, M.; Llorente, C. Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals. Mater. Charact. 2001, 46, 285–296. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Z.-G.; Zhang, C. Effect of retained austenite on austenite memory of a 13% Cr–5% Ni martensitic steel. J. Alloys Compd. 2013, 577, S654–S660. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Yuan, X.; Li, D.; Yin, Y.; Li, S. Microstructure evolution and orientation relationship of reverted austenite in 13Cr supermartensitic stainless steel during the tempering process. Materials 2019, 12, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinelli, G.; Kotsilkova, R.; Ivanov, E.; Petrova-Doycheva, I.; Menseidov, D.; Georgiev, V.; Di Maio, R.; Silvestre, C. Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly(lactic) acid composites filled with carbon nanotubes and graphene. Nanomaterials 2019, 10, 35. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Wu, Y.; Lu, Q.; Xu, P.; Zheng, J.; Wei, L. Tensile properties and impact toughness of S30408 stainless steel and its welded joints at cryogenic temperatures. Cryogenics 2018, 92, 50–59. [Google Scholar] [CrossRef]
- Pickering, F.B.; Vassiliou, A.D. Effect of austenitizing temperature on constitution, transformation, and tempering of 9Cr-1Mo steel. Met. Technol. 1980, 7, 409–413. [Google Scholar] [CrossRef]
- Huyghe, P.; Malet, L.; Caruso, M.; Georges, C.; Godet, S. On the relationship between the multiphase microstructure and the mechanical properties of a 0.2C quenched and partitioned steel. Mater. Sci. Eng. A 2017, 701, 254–263. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Rong, L.; Ping, D.; Yin, F.; Li, Y. Formation of the reversed austenite during intercritical tempering in a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater. Lett. 2010, 64, 1411–1414. [Google Scholar] [CrossRef]
- Zahiri, A.H.; Chakraborty, P.; Wang, Y.; Cao, L. Strong strain hardening in ultrafast melt-quenched nanocrystalline Cu: The role of fivefold twins. J. Appl. Phys. 2019, 126, 075103. [Google Scholar] [CrossRef]
Sample | C | Si | Cr | Ni | Mn | Mo | S | P |
---|---|---|---|---|---|---|---|---|
ZG06Cr13Ni4Mo | 0.04 | 0.58 | 13.6 | 4.10 | 0.60 | 0.55 | 0.01 | 0.02 |
ER410NiMo | 0.02 | 0.40 | 12.1 | 4.61 | 0.60 | 0.47 | 0.002 | 0.021 |
Element | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|
Cr/wt.% | 12.69 | 12.79 | 11.05 | 11.14 | 11.95 | 11.69 |
Ni/wt.% | 4.48 | 4.25 | 6.41 | 6.16 | 6.38 | 6.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Wei, Z.; Li, G.; Zhang, X.; Ci, H.; Zhi, Y. Effect of Reversed Austenite on Mechanical Properties of ZG06Cr13Ni4Mo Repair Welded Joint. Coatings 2022, 12, 1. https://doi.org/10.3390/coatings12010001
Su Y, Wei Z, Li G, Zhang X, Ci H, Zhi Y. Effect of Reversed Austenite on Mechanical Properties of ZG06Cr13Ni4Mo Repair Welded Joint. Coatings. 2022; 12(1):1. https://doi.org/10.3390/coatings12010001
Chicago/Turabian StyleSu, Yunhai, Zuyong Wei, Gang Li, Xiangwen Zhang, Hedi Ci, and Ying Zhi. 2022. "Effect of Reversed Austenite on Mechanical Properties of ZG06Cr13Ni4Mo Repair Welded Joint" Coatings 12, no. 1: 1. https://doi.org/10.3390/coatings12010001
APA StyleSu, Y., Wei, Z., Li, G., Zhang, X., Ci, H., & Zhi, Y. (2022). Effect of Reversed Austenite on Mechanical Properties of ZG06Cr13Ni4Mo Repair Welded Joint. Coatings, 12(1), 1. https://doi.org/10.3390/coatings12010001