Kinetics Investigation of the Formation of a Gas-Resistant Glass-Forming Layer during the Oxidation of ZrB2-MoSi2-Y2O3-Al Coatings in the Air Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devi, G.; Rao, K. Carbon-carbon composites—An overview. Def. Sci. J. 1993, 43, 369–383. [Google Scholar] [CrossRef]
- Jacobson, N.S.; Curry, D.M. Oxidation microstructure studies of reinforced carbon/carbon. Carbon 2006, 44, 1142–1150. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, J.E.; Buesking, K.W.; Sullivan, B.J. Carbon-carbon composites. Annu. Rev. Mater. Sci. 2003, 24, 19–44. [Google Scholar] [CrossRef]
- Lalit, M.M. High performance carbon–carbon composites. Sadhana 2003, 28, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.Z.; Yi, Z.; Lemuel, G.; Xiang, X.; Bai, Y.H. Preparation and oxidation property of ZrB2-MoSi2/SiC coating on carbon/carbon composites. Trans. Nonferr. Met. Soc. China 2011, 21, 1538–1544. [Google Scholar] [CrossRef]
- Zhi, Q.Y.; Xiang, X.; Pen, X.; Feng, C.; Hong, B.Z.; Bai, Y.H. Oxidation behavior of Mo-Si coated C/SiC composites. Aerosp. Mater. Technol. 2007, 10, 39–43. [Google Scholar] [CrossRef]
- Liu, X.; Han, W.; Wen, K.; Deng, C.; Deng, C.; Liu, M.; Zhou, K. Bimodal microstructure ZrB2-MoSi2 coating prepared by atmospheric plasma spraying for carbon/carbon composites against long-term ablation. Ceram. Int. 2017, 43, 16659–16667. [Google Scholar] [CrossRef]
- Soo-Jin, P.; Min-Kang, S. The effect of MoSi2 on the oxidation behavior of carbon/carbon composites. Carbon 2001, 39, 1229–1235. [Google Scholar] [CrossRef]
- McKee, D.W. Oxidation behavior and protection of carbon/carbon composites. Carbon 1987, 25, 551–557. [Google Scholar] [CrossRef]
- Kovaleva, M.; Prozorova, M.; Arseenko, M.; Tyurin, Y.; Kolisnichenko, O.; Yapryntsev, M.; Novikov, V.; Vagina, O.; Sirota, V. Zircon-based ceramic coatings formed by a new multi-chamber gas-dynamic accelerator. Coatings 2017, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Kovaleva, M.G.; Goncharov, I.Y.; Novikov, V.Y.; Yapryntsev, M.N.; Vagina, O.N.; Pavlenko, I.N.; Sirota, V.V.; Tyurin, Y.N.; Kolisnichenko, O.V. Characteristics of ZrB2-ZrO2-MoSi2-Al coating on carbon/carbon composite obtained by a new multi-chamber detonation accelerator. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012053. [Google Scholar] [CrossRef]
- Novikov, V.Y.; Kovaleva, M.G.; Goncharov, I.Y.; Yapryntsev, M.N.; Tyurin, Y.N.; Sirota, V.V.; Vagina, O.N.; Pavlenko, I.N.; Kolisnichenko, O.V. Microstructure and high-temperature oxidation behavior of ZrB2–ZrO2–MoSi2–Al coatings for the protection of carbon/carbon composites. Adv. Struct. Mater. 2021, 149, 169–177. [Google Scholar] [CrossRef]
- Vasilik, N.; Tyurin, Y.; Kolisnichenko, O. Method for Gas-Dynamic Detonating Speedup of Powders and Device for Its Implementation. RU Patent 2,506,341, 11 July 2012. [Google Scholar]
- Kovaleva, M.; Tyurin, Y.; Vasilik, N.; Kolisnichenko, O.; Prozorova, M.; Arseenko, M.; Danshina, E. Deposition and characterization of Al2O3 coatings by multi-chamber gas-dynamic accelerator. Surf. Coat. Technol. 2013, 232, 719–725. [Google Scholar] [CrossRef]
- Kovaleva, M.; Goncharov, I.; Novikov, V.; Yapryntsev, M.; Vagina, O.; Pavlenko, I.; Sirota, V.; Tyurin, Y.; Kolisnichenko, O. Effect of heat treatment on the microstructure and phase composition of ZrB2–MoSi2 coating. Coatings 2019, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Astapov, A.N.; Terentieva, V.S. Review of home-grown technologies in the field of protection of carbon-bearing materials from gaseous corrosion and erosion in plasma’s high-speed flow. Izvestiya Vuzov Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya 2014, 4, 50–70. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Li, C.J.; Ohmori, A. Relationships between the microstructure and properties of thermally sprayed deposits. J. Therm. Spray Technol. 2002, 11, 365–374. [Google Scholar] [CrossRef]
- Wong-Ng, W.; McMurdie, H.F.; Hubbard, C.R.; Mighell, A.D. JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST). J. Res. Natl. Inst. Stand. Technol. 2021, 106, 1013–1028. [Google Scholar] [CrossRef]
- Sirota, V.; Pavlenko, V.; Cherkashina, N.; Kovaleva, M.; Tyurin, Y.; Kolisnichenko, O. Preparation of aluminum oxide coating on carbon/carbon composites using a new detonation sprayer. Int. J. Appl. Ceram. Technol. 2020, 18, 483–489. [Google Scholar] [CrossRef]
- Sazonova, M.V.; Ban’kovskaya, I.B.; Gorbatova, G.N. Heat resistant protective coatings for carbon materials. Izv. AN SSSR. Neorgan. Mater. 1995, 31, 1072–1075. (In Russian) [Google Scholar]
- Opeka, M.M.; Talmy, G.; Wuchina, E.J.; James, A. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 1999, 19, 2405–2414. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Shen, K.; Zheng, Y. Multilayered coatings for protecting carbon-carbon composites from oxidation. Carbon 1995, 33, 449. [Google Scholar] [CrossRef]
- Ban’kovskaya, I.B.; Gorbatova, G.N.; Semov, M.P. Effect of SiO2 particle size on the reaction between ZrB2 and SiO2 in air. Inorg. Mater. 2003, 39, 469–471. [Google Scholar] [CrossRef]
Barrel Length, mm | Barrel Diameter, mm | Powder Feed Rate, g/h | Flow Rate of Fuel Mixture Components, m3/h | Oxygen/Fuel Ratio | ||
---|---|---|---|---|---|---|
Oxygen | C3H8 + C4H10 | Air | ||||
500 | 16 | 600 | 4.00 */ 3.60 ** | 0.75 */ 0.68 ** | 0.12 */ 0.12 ** | 5.28 */5.38 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovaleva, M.; Sirota, V.; Goncharov, I.; Novikov, V.; Yapryntsev, M.; Vagina, O.; Pavlenko, I.; Tyurin, Y.; Mogucheva, A. Kinetics Investigation of the Formation of a Gas-Resistant Glass-Forming Layer during the Oxidation of ZrB2-MoSi2-Y2O3-Al Coatings in the Air Atmosphere. Coatings 2021, 11, 1018. https://doi.org/10.3390/coatings11091018
Kovaleva M, Sirota V, Goncharov I, Novikov V, Yapryntsev M, Vagina O, Pavlenko I, Tyurin Y, Mogucheva A. Kinetics Investigation of the Formation of a Gas-Resistant Glass-Forming Layer during the Oxidation of ZrB2-MoSi2-Y2O3-Al Coatings in the Air Atmosphere. Coatings. 2021; 11(9):1018. https://doi.org/10.3390/coatings11091018
Chicago/Turabian StyleKovaleva, Marina, Viacheslav Sirota, Igor Goncharov, Vseslav Novikov, Maxim Yapryntsev, Olga Vagina, Ivan Pavlenko, Yuri Tyurin, and Anna Mogucheva. 2021. "Kinetics Investigation of the Formation of a Gas-Resistant Glass-Forming Layer during the Oxidation of ZrB2-MoSi2-Y2O3-Al Coatings in the Air Atmosphere" Coatings 11, no. 9: 1018. https://doi.org/10.3390/coatings11091018
APA StyleKovaleva, M., Sirota, V., Goncharov, I., Novikov, V., Yapryntsev, M., Vagina, O., Pavlenko, I., Tyurin, Y., & Mogucheva, A. (2021). Kinetics Investigation of the Formation of a Gas-Resistant Glass-Forming Layer during the Oxidation of ZrB2-MoSi2-Y2O3-Al Coatings in the Air Atmosphere. Coatings, 11(9), 1018. https://doi.org/10.3390/coatings11091018