Image Definition Evaluations on Denoised and Sharpened Wood Grain Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Wood Specimens
2.2. Image Acquisition of Wood Grain
2.3. Parameter Settings in Dust & Scratches and Unsharp Mask
2.4. Calculation Methods for Evaluation Values
3. Results and Discussion
3.1. Noise Reduction
3.2. Sharpening
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amor, A.; Cloutier, A.; Beauregard, R. Determination of physical and mechanical properties of finishing papers used for wood-based composite products. Wood Fiber Sci. 2009, 41, 117–126. [Google Scholar]
- Peng, X.; Zhang, Z. Surface properties of different natural precious decorative veneers by plasma modification. Eur. J. Wood Prod. 2019, 77, 125–137. [Google Scholar] [CrossRef]
- Feng, X.; Wu, Z.; Sang, R.; Wang, F.; Zhu, Y.; Wu, M. Surface design of wood-based board to imitate wood texture using 3D printing technology. BioResources 2019, 14, 8196–8211. [Google Scholar]
- Sang, R.; Manley, A.; Wu, Z.; Feng, X. Digital 3D Wood Texture: UV-Curable Inkjet Printing on Board Surface. Coatings 2020, 10, 1144. [Google Scholar] [CrossRef]
- Liu, A.J.; Dong, Z.; Hašan, M.; Marschner, S. Simulating the structure and texture of solid wood. ACM Trans. Graph. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Erdenebat, M.; Kim, B.; Piao, Y.; Park, S.; Kwon, K.; Piao, M.; Yoo, K.; Kim, N. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging. Appl. Opt. 2017, 56, 7796–7802. [Google Scholar] [CrossRef]
- Jones, L.; Nellist, P. Identifying and Correcting Scan Noise and Drift in the Scanning Transmission Electron Microscope. Microsc. Microanal. 2013, 19, 1–11. [Google Scholar] [CrossRef]
- Zhang, B.; Allebach, J.P. Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans. Image Process. 2008, 17, 664–678. [Google Scholar] [CrossRef]
- Wen, J.; Li, Z.; Xiao, J. Noise removal in tree radar B-scan images based on Shearlet. Wood Res. 2020, 65, 1–12. [Google Scholar] [CrossRef]
- Chen, G.; Panetta, K.; Agaian, S. Color image attribute and quality measurements. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9120, 91200T. [Google Scholar]
- Panetta, K.; Chen, G.; Agaian, S. No reference color image contrast and quality measures. IEEE Trans. Consum. Electron. 2013, 59, 643–651. [Google Scholar] [CrossRef]
- Nakamura, M.; Miyake, Y.; Nakano, T. Effect of image characteristics of edge-grain patterns on visual impressions. J. Wood Sci. 2012, 58, 505–512. [Google Scholar] [CrossRef][Green Version]
- Burger, W.; Burge, M.J. 5 Filters. In Principles of Digital Image Processing Fundamental Technique; Burger, W., Burge, M.J., Eds.; Springer: London, UK, 2009; pp. 97–130. [Google Scholar]
- Woojae, K.; Kim, H.; Oh, H.; Kim, J.; Lee, S. No-reference perceptual sharpness assessment for ultra-high-definition images. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 86–90. [Google Scholar]
- Yang, C.Y.; Liu, S.; Yang, M.H. Hallucinating Compressed Face Images. Int. J. Comput. Vis. 2018, 126, 1–18. [Google Scholar] [CrossRef]
- Li, M.; Ghosal, S. Fast Translation Invariant Multiscale Image Denoising. IEEE Trans. Image Process. 2015, 24, 4876–4887. [Google Scholar] [CrossRef]
- Joshi, N.; Zitnick, C.; Szeliski, R.; Kriegman, D. Image deblurring and denoising using color priors. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1550–1557. [Google Scholar]
- Garg, B. Restoration of highly salt-and-pepper-noise-corrupted images using novel adaptive trimmed median filter. Signal Image Video Process. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Yi, Y.; Yu, X.; Wang, L.; Yang, Z. Image quality assessment based on structural distortion and image definition. Int. Conf. Comput. Sci. Softw. Eng. 2008, 6, 253–256. [Google Scholar]
- Fraser, B.; Schewe, J. Chapter Four: Sharpening Tools, Chapter Five: Industrial-Strength Sharpening Techniques. In Real World Image Sharpening with Adobe Photoshop, Camera Raw, and Lightroom; Fraser, B., Schewe, J., Eds.; Peachpit Press: Berkeley, CA, USA, 2010; pp. 121–292. [Google Scholar]
- Abdul Hamid, L.B.; Rosli, N.R.; Mohd Khairuddin, A.S.; Mokhtar, N.; Yusof, R. Denoising module for wood texture images. Wood Sci. Technol. 2018, 52, 1539–1554. [Google Scholar] [CrossRef]
- Li, Q.; Feng, H.; Xu, Z. Auto-focus apparatus with digital signal processor. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5633, 416–423. [Google Scholar]
- Wang, G.; Zhu, J.; Cao, P.; Liu, W. Research on Vickers Hardness Image Definition Evaluation Function. Adv. Mater. Res. 2010, 129–131, 134–138. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, M.; Qiu, X. The Study of Image Definition Evaluation Function Based on Wavelet Filter. IEEE Symp. Virtual Environ. Hum. Comput. Interfaces Meas. Syst. 2007, 131, 134. [Google Scholar]
- Tian, Y.; Hu, H.; Cui, H.; Yang, S.; Qi, J.; Xu, Z.; Li, L. Three-dimensional surface microtopography recovery from a multifocus image sequence using an omnidirectional modified Laplacian operator with adaptive window size. Appl. Opt. 2017, 56, 6300–6310. [Google Scholar] [CrossRef] [PubMed]
- Senel, H.G. Gradient estimation using wide support operators. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 2009, 18, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, H.; Li, T.; Yan, P.; Zhao, K.; Qi, C.; Gao, F. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain. BioMed. Eng. Online 2017, 16, 100–114. [Google Scholar] [CrossRef]
- Kudomi, S.; Ueda, K.; Ueda, Y.; Kawakubo, M.; Sanada, T. Evaluation of the spatial resolution of multiplanar reconstruction images. Radiol. Phys. Technol. 2008, 1, 229–233. [Google Scholar] [CrossRef]
- Frasnedo, S.; Sandou, G.; Duc, G.; Chapuis, C.; Feyel, P. Line of sight controller tuning using Bayesian optimisation: Application to a double stage stabilisation platform. Int. J. Syst. Sci. 2008, 50, 1–15. [Google Scholar] [CrossRef]
- Davies, A.; Fennessy, P. Chapter 6: Digital image processing. In Digital Imaging for Photographers; Davies, A., Fennessy, P., Eds.; Focal Press: Oxford, UK, 2001; pp. 93–141. [Google Scholar]
- Ranjan, N.; Mishra, B.; Rath, A.; Swain, S. A Time Efficient Clustering Algorithm for Gray Scale Image Segmentation. Int. J. Comput. Vis. Image Process. 2013, 3, 22–32. [Google Scholar]
Scheme | Tree Name | Scientific Name | Production Area | Wood Size (L × W × T) |
---|---|---|---|---|
1 | Teak | T. grandis | China | 900 mm × 120 mm × 20 mm |
2 | Balsamo | M. balsamum | Brazil | 900 mm × 120 mm × 20 mm |
3 | Walnut | J. nigra | China | 900 mm × 120 mm × 20 mm |
4 | Birch | B. papyrifera | China | 900 mm × 120 mm × 20 mm |
Index | Scheme I | Scheme II | Scheme III | Scheme IV | Scheme V | Scheme VI | Original Images |
---|---|---|---|---|---|---|---|
Radius (pixels) | 1 | 1 | 1 | 2 | 2 | 2 | / |
Threshold (levels) | 10 | 20 | 30 | 30 | 40 | 50 | / |
Teak | |||||||
Balsamo | |||||||
Walnut | |||||||
Birch |
Index | Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images |
---|---|---|---|---|---|
Radius (pixels) | 1 | 1 | 2 | 2 | / |
Threshold (levels) | 30 | 35 | 50 | 55 | / |
Index | Teak | ||||
Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images | |
RGF | 0 | 0.2036 | 0.0818 | 0.2905 | 1 |
PSNR | 37.0392 | 37.4444 | 33.5832 | 34.4001 | / |
SSIM | 0.9967 | 0.9969 | 0.9927 | 0.9939 | 1 |
Index | Balsamo | ||||
Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images | |
RGF | 0 | 0.4025 | 0.2160 | 0.4515 | 1 |
PSNR | 36.9656 | 38.6653 | 33.9870 | 35.2568 | / |
SSIM | 0.9969 | 0.9978 | 0.9940 | 0.9954 | 1 |
Index | Walnut | ||||
Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images | |
RGF | 0 | 0.4361 | 0.4453 | 0.6706 | 1 |
PSNR | 35.0493 | 37.0756 | 33.7263 | 35.7349 | / |
SSIM | 0.9856 | 0.9912 | 0.9830 | 0.9895 | 1 |
Index | Birch | ||||
Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images | |
RGF | 0 | 0.5359 | 0.7756 | 0.9001 | 1 |
PSNR | 36.0982 | 39.0789 | 39.0534 | 42.1799 | / |
SSIM | 0.9919 | 0.9960 | 0.9963 | 0.9982 | 1 |
Index | Scheme I | Scheme II | Scheme III | Scheme IV | Denoised Images | Original Images |
---|---|---|---|---|---|---|
Amount (%) | 50 | 50 | 50 | 50 | / | / |
Radius (pixels) | 1.5 | 1.5 | 1.5 | 1.5 | / | / |
Threshold (levels) | 0 | 5 | 10 | 20 | / | / |
Teak | ||||||
Balsamo | ||||||
Walnut | ||||||
Birch |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.; Wu, Z.; Feng, X. Image Definition Evaluations on Denoised and Sharpened Wood Grain Images. Coatings 2021, 11, 976. https://doi.org/10.3390/coatings11080976
Mao J, Wu Z, Feng X. Image Definition Evaluations on Denoised and Sharpened Wood Grain Images. Coatings. 2021; 11(8):976. https://doi.org/10.3390/coatings11080976
Chicago/Turabian StyleMao, Jingjing, Zhihui Wu, and Xinhao Feng. 2021. "Image Definition Evaluations on Denoised and Sharpened Wood Grain Images" Coatings 11, no. 8: 976. https://doi.org/10.3390/coatings11080976
APA StyleMao, J., Wu, Z., & Feng, X. (2021). Image Definition Evaluations on Denoised and Sharpened Wood Grain Images. Coatings, 11(8), 976. https://doi.org/10.3390/coatings11080976