Silicon Carbide Wafer Machining by Using a Single Filament Plasma at Atmospheric Pressure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Filament Stability
3.2. 6 mm Linear Scan Etch Profile
3.3. 6 by 6 mm2 Square 2D Raster Scan Etch
3.4. Profile Stability and Roughness Reduction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casstevens, J.M.; Rashed, A.; Plummer, R.; Bray, D.; Gates, R.L.; Lara-Curzio, E.; Ferber, M.K.; Kirkland, T. Silicon carbide high performance optics: A cost-effective, flexible fabrication process. Proc. SPIE 2001, 4451, 458–467. [Google Scholar] [CrossRef]
- Ebizuka, N.; Dai, Y.; Eto, H.; Lin, W.; Ebisuzaki, T.; Omori, H.; Handa, T.; Takami, H.; Takahashi, Y. Development of SiC ultra-light mirror for large space telescope and for extremely huge ground based telescope. Proc. SPIE 2003, 4842, 329–334. [Google Scholar]
- Hall, C.; Tricard, M.; Murakoshi, H.; Yamamoto, Y.; Kuriyama, K.; Yoko, H. New mold manufacturing techniques. Proc. SPIE 2005, 5868, 58680V. [Google Scholar] [CrossRef]
- Yih, P.H.; Saxena, V.; Steckl, A.J. A Review of SiC Reactive Ion Etching in Fluorinated Plasmas. Phys. Stat. Sol. (b) 1997, 202, 605–642. [Google Scholar] [CrossRef]
- Vassen, R.; Stöver, D. Processing and Properties of Nanograin Silicon Carbide. J. Am. Ceram. Soc. 1999, 82, 2585–2593. [Google Scholar] [CrossRef]
- Calvel, B. Recent development in silicon carbide lightweight optics at Matra Marconi Space. In Proceedings of the Next Generation Space Telescope Science and Technology, Hyannis, MA, USA, 13–16 September 1999; Smith, E., Long, K., Eds.; ASP Conference Series: Hyannis, MA, USA, 1999; p. 435. [Google Scholar]
- Johnson, J.S.; Grobsky, K.D.; Bray, D. Rapid fabrication of lightweight silicon carbide mirrors. Proc. SPIE 2002, 4771, 243–253. [Google Scholar] [CrossRef]
- Goel, S. The current understanding on the diamond machining of silicon carbide. J. Phys. D: Appl. Phys. 2014, 47, 243001. [Google Scholar] [CrossRef] [Green Version]
- Dillon, J.A., Jr.; Schlier, R.E.; Farnswaorth, H.E. Some Surface Properties of Silicon-Carbide Crystals. J. Appl. Phys. 1959, 30, 675–679. [Google Scholar] [CrossRef]
- Bechstedt, F.; Käckell, P.; Zywietz, A.; Karch, K.; Adolph, B.; Tenelsen, K.; Furthmüller, J. Polytypism and Properties of Silicon Carbide. Phys. Stat. Sol. (b) 1997, 202, 35–62. [Google Scholar] [CrossRef]
- Neudeck, P. Silicon Carbide Technology; NASA Lewis Research Center: Cleveland, OH, USA, 1998. [Google Scholar]
- Xu, H.H.K.; Padture, N.P.; Jahanmir, S. Effect of Microstructure on Material-Removal Mechanisms and Damage Tolerance in Abrasive Machining of Silicon Carbide. J. Am. Ceram. Soc. 1995, 78, 2443–2448. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, X.L.; Tokura, H.; Yoshikawa, M. Grinding induced damage in ceramics. J. Mater. Proc. Technol. 2003, 132, 353–364. [Google Scholar] [CrossRef]
- Gao, J.; Chen, J.; Liu, G.; Yan, Y.; Liu, X.; Huang, Z. Role of microstructure on surface and subsurface damage of sintered silicon carbide during grinding and polishing. Wear 2010, 270, 88–94. [Google Scholar] [CrossRef]
- Murray, J.W.; Fay, M.W.; Kunieda, M.; Clare, A.T. TEM study on the electrical discharge machined surface of single-crystal silicon. J. Mater. Process. Technol. 2013, 213, 801–809. [Google Scholar] [CrossRef]
- Groth, B.; Haber, R.; Mann, A. Raman Micro-Spectroscopy of Polytype and Structural Changes in 6H-Silicon Carbide due to Machining. Int. J. Appl. Ceram. Technol. 2015, 12, 795–804. [Google Scholar] [CrossRef]
- Tan, T.H.; Yan, J. Atomic-scale characterization of subsurface damage and structural changes of single-crystal silicon carbide subjected to electrical discharge machining. Acta Mater. 2017, 123, 362–372. [Google Scholar] [CrossRef]
- Rao, X.; Zhang, F.; Lu, Y.; Luo, X.; Chen, F. Surface and subsurface damage of reaction-bonded silicon carbide induced by electrical discharge diamond grinding. Int. J. Mach. Tools Manuf. 2020, 154, 103564. [Google Scholar] [CrossRef]
- Schindler, A.; Haensel, T.; Flamm, D.; Frank, W.; Boehm, G.; Frost, F.; Fechner, R.; Bigl, F.; Rauschenbach, B. Ion Beam and Plasma Jet Etching for Optical Component Fabrication. Proc. SPIE 2001, 4440, 217–227. [Google Scholar]
- Frost, F.; Fechner, R.; Ziberi, B.; Flamm, D.; Schindler, A. Large area smoothing of optical surfaces by low-energy ion beams. Thin Solid Films 2004, 459, 100–105. [Google Scholar] [CrossRef]
- Allen, D.M.; Shore, P.; Evans, R.W.; Fanara, C.; O’Brien, W.; Marson, S.; O’Neill, W. Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann. 2009, 58, 647–662. [Google Scholar] [CrossRef]
- Frost, F.; Fechner, R.; Ziberi, B.; Völlner, J.; Flamm, D.; Schindler, A. Large area smoothing of surfaces by ion bombardment: Fundamentals and applications. J. Phys.: Condens. Matter 2009, 21, 224026. [Google Scholar] [CrossRef]
- Richter, C.; Espertshuber, K.; Wagner, C.; Eickhoff, M.; Krötz, G. Rapid plasma etching of cubic Sic using NF3-O2 gas mixtures. Mater. Sci. Eng. B 1997, 46, 160–163. [Google Scholar] [CrossRef]
- Reichert, W.; Stefan, D.; Obermeier, E.; Wondrak, W. Fabrication of smooth β-SiC surfaces by reactive ion etching using a graphite electrode. Mater. Sci. Eng. B 1997, 46, 190–194. [Google Scholar] [CrossRef]
- Tanaka, S.; Rajanna, K.; Abe, T.; Esashi, M. Deep reactive ion etching of silicon carbide. J. Vac. Sci. Technol. B 2001, 19, 2173–2176. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kim, D.W.; Sung, Y.J.; Yeom, G.Y. Characteristics of Silicon Carbide Etching Using Magnetized Inductively Coupled Plasma. Jpn. J. Appl. Phys. 2005, 44, 1445–1449. [Google Scholar] [CrossRef]
- Oda, H.; Wood, P.; Ogiya, H.; Miyoshi, S.; Tsuji, O. Optimizing the SiC Plasma Etching Process for Manufacturing Power Devices. In Proceedings of the CS MANTECH Conference 2015, Scottsdale, AZ, USA, 18–21 May 2015; pp. 125–128. [Google Scholar]
- Eichentopf, I.-M.; Böhm, G.; Arnold, T. Etching mechanisms during plasma jet machining of silicon carbide. Surf. Coat. Tech. 2011, 205, S430–S434. [Google Scholar] [CrossRef]
- Arnold, T.; Böhm, G. Application of atmospheric plasma jet machining (PJM) for effective surface figuring of SiC. Precis. Eng. 2012, 36, 546–553. [Google Scholar] [CrossRef]
- Deng, H.; Endo, K.; Yamamura, K. Damage-free finishing of CVD-SiC by a combination of dry plasma etching and plasma-assisted polishing. Int. J. Mach. Tools Manuf. 2017, 115, 38–46. [Google Scholar] [CrossRef]
- Sun, R.; Yang, X.; Ohkubo, Y.; Endo, K.; Yamamura, K. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness. Sci. Rep. 2018, 8, 2376. [Google Scholar] [CrossRef]
- Arnold, T.; Böhm, G.; Fechner, R.; Meister, J.; Nickel, A.; Frost, F.; Hänsel, T.; Schindler, A. Ultra-precision surface finishing by ionbeam and plasma jet techniques—status and outlook. Nucl. Instrum. Methods Phys. Res. A 2010, 616, 147–156. [Google Scholar] [CrossRef]
- Sano, Y.; Kato, T.; Yamamura, K.; Mimura, H.; Matsuyama, S.; Yamauchi, K. Beveling of Silicon Carbide Wafer by Plasma Etching Using Atmospheric-Pressure Plasma. Jpn. J. Appl. Phys. 2010, 49, 08JJ03. [Google Scholar] [CrossRef]
- Watanabe, H.; Ohmi, H.; Kakiuchi, H.; Hosoi, T.; Shimura, T.; Yasutake, K. Surface cleaning and etching of 4H-SiC(0001) using high-density atmospheric pressure hydrogen plasma. J. Nanosci. Nanotechnol. 2011, 11, 2802–2808. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, K.; Yamamoto, Y.; Deng, H. Preliminary Study on Chemical Figuring and Finishing of Sintered SiC Substrate Using Atmospheric Pressure Plasma. Procedia CIRP 2012, 3, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Sano, Y.; Aida, K.; Kato, T.; Yamamura, K.; Mimura, H.; Matsuyama, S.; Yamauchi, K. Cutting of SiC Wafer by Atmospheric-Pressure Plasma Etching with Wire Electrode. Mater. Sci. Forum 2012, 717, 865–868. [Google Scholar] [CrossRef]
- Sano, Y.; Nishikawa, H.; Okada, Y.; Yamamura, K.; Matsuyama, S.; Yamauchi, K. Dicing of SiC wafer by atmospheric-pressure plasma etching process with slit mask for plasma confinement. Mater. Sci. Forum 2014, 724, 759–762. [Google Scholar] [CrossRef]
- Seok, D.C.; Yoo, S.R.; Lee, K.I.; Choi, Y.S.; Jung, Y.H. Relation between etching profile and voltage–current shape of sintered SiC etching by atmospheric pressure plasma. Plasma Sci. Technol. 2019, 21, 045504. [Google Scholar] [CrossRef]
- Habuka, H.; Oda, S.; Fukai, Y.; Fukae, K.; Takeuchi, T.; Aihara, M. Silicon Carbide Etching Using Chlorine Trifluoride Gas. Jpn. J. Appl. Phys. 2005, 44, 1376–1381. [Google Scholar] [CrossRef]
- Shioda, K.; Kurashima, K.; Habuka, H.; Ito, H.; Mitani, S.; Takahashic, Y. Quick Cleaning Process for Silicon Carbide Chemical Vapor Deposition Reactor. ECS J. Solid State Sci. Technol. 2017, 6, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Costello, J.A.; Tressler, R.E. Oxidation Kinetics of Silicon Carbide Crystals and Ceramics I, In Dry Oxygen. J. Am. Ceram. Soc. 1986, 69, 674–681. [Google Scholar] [CrossRef]
- Kim, B.; Kim, K.; Lee, B.T. Radio frequency bias power effect on surface roughness of silicon carbide plasma etching. Appl. Surf. Sci. 2003, 217, 261–267. [Google Scholar] [CrossRef]
- Xia, J.H.; Rusli; Choy, S.F.; Gopalakrishan, R.; Tin, C.C.; Yoon, S.F.; Ahn, J. CHF3–O2 reactive ion etching of 4H-SiC and the role of oxygen. Microelectron. Eng. 2006, 83, 381–386. [Google Scholar] [CrossRef]
- Xia, J.H.; Rusli; Choy, S.F.; Gopalakrishan, R.; Tin, C.C.; Ahn, J. The role of oxygen in electron cyclotron resonance etching of silicon carbide. Microelectro. Eng. 2006, 83, 9–11. [Google Scholar] [CrossRef]
He (slm) | NF3 (sccm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.5 | 1 | 3 | 4 | 5 | 6 | 9 | 10 | 11 | |
1 | NF | NF | NF | CF | CF | JF | na | na | na |
2 | NF | NF | NF | NF | NF | NF | NF | CF | JF |
3 | NF | NF | NF | NF | NF | NF | NF | NF | CF |
NF3 (sccm) | Area (mm2) | VRR (mm3/h) | H (μm) | FWHM (mm) |
---|---|---|---|---|
0.5 | 7.75 × 10−4 | 3.49 × 10−2 | 1.01 | 0.72 |
1 | 8.32 × 10−4 | 3.75 × 10−2 | 1.21 | 0.65 |
2 | 13.1 × 10−4 | 5.90 × 10−2 | 2.02 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.; Seok, D.C.; Lee, K.I.; Jung, Y.H.; Choi, Y.S. Silicon Carbide Wafer Machining by Using a Single Filament Plasma at Atmospheric Pressure. Coatings 2021, 11, 958. https://doi.org/10.3390/coatings11080958
Yoo S, Seok DC, Lee KI, Jung YH, Choi YS. Silicon Carbide Wafer Machining by Using a Single Filament Plasma at Atmospheric Pressure. Coatings. 2021; 11(8):958. https://doi.org/10.3390/coatings11080958
Chicago/Turabian StyleYoo, Seungryul, Dong Chan Seok, Kang Il Lee, Yong Ho Jung, and Yong Sup Choi. 2021. "Silicon Carbide Wafer Machining by Using a Single Filament Plasma at Atmospheric Pressure" Coatings 11, no. 8: 958. https://doi.org/10.3390/coatings11080958
APA StyleYoo, S., Seok, D. C., Lee, K. I., Jung, Y. H., & Choi, Y. S. (2021). Silicon Carbide Wafer Machining by Using a Single Filament Plasma at Atmospheric Pressure. Coatings, 11(8), 958. https://doi.org/10.3390/coatings11080958