Small-Angle Ultra-Narrowband Tunable Mid-Infrared Absorber Composing from Graphene and Dielectric Metamaterials
Abstract
:1. Introduction
2. Structure of the Proposed Absorber
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.; Veronis, G.; Fan, S.; Brongersma, M.L. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl. Phys. Lett. 2006, 89, 151116. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Li, Q.; Yu, J.; Luo, H.; Du, K.; Qiu, M. Simultaneous single-peak and narrowband thermal emission enabled by hybrid metal-polar dielectric structures. Appl. Phys. Lett. 2019, 115, 093505. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Yi, Z.; Yang, H.; Tang, Y.; Yi, Y.; Yao, W.; Wang, J.; Yi, Y. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy 2020, 16, 100390. [Google Scholar] [CrossRef]
- Cen, C.; Chen, Z.; Xu, D.; Jiang, L.; Chen, X.; Yi, Z.; Wu, P.; Li, G.; Yi, Y. High quality factor, high sensitivity metamaterial graphene-perfect absorber based on critical coupling theory and impedance Matching. Nanomaterials 2020, 10, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Tang, C.; Xie, N.; Chen, J.; Gu, P.; Peng, C.; Liu, B. High-performance metamaterial sensors based on strong coupling between surface plasmon polaritons and magnetic plasmon resonances. Results Phys. 2019, 14, 102397. [Google Scholar] [CrossRef]
- Liao, Y.-L.; Zhao, Y. A wide-angle broadband polarization-dependent absorber with stacked metal-dielectric grating. Opt. Commun. 2016, 370, 245–249. [Google Scholar] [CrossRef]
- Sergeant, N.P.; Pincon, O.; Agrawal, M.; Peumans, P. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Opt. Express 2009, 17, 22800–22812. [Google Scholar] [CrossRef]
- Liao, Y.-L.; Zhao, Y.; Wu, S.; Feng, S. Wide-angle broadband absorber based on uniform-sized hyperbolic metamaterial. Opt. Mater. Express 2018, 8, 2484–2493. [Google Scholar] [CrossRef]
- Wu, D.; Liu, C.; Xu, Z.; Liu, Y.; Yu, Z.; Yu, L.; Chen, L.; Li, R.; Ma, R.; Ye, H. The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 2018, 139, 104–111. [Google Scholar] [CrossRef]
- Liao, Y.-L.; Zhao, Y. Ultrabroadband absorber using a deep metallic grating with narrow slits. Opt. Commun. 2015, 334, 328–331. [Google Scholar] [CrossRef]
- Dayal, G.; Ramarkrishna, A. Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disksperfect absorbers with stacked metal–dielectric disks. J. Opt. 2013, 15, 055106. [Google Scholar] [CrossRef]
- Wang, B.-X.; He, Y.; Lou, P.; Huang, W.-Q.; Xing, W. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2020, 2, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-X.; He, Y.; Lou, P.; Huang, W.-Q.; Pi, F. Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators. Results Phys. 2020, 16, 102930. [Google Scholar] [CrossRef]
- Wang, B.-X.; Tang, C.; Niu, Q.; He, Y.; Chen, T. Design of narrow discrete distances of dual/triple-band terahertz met-amaterial absorbers. Nanoscale Res. Lett. 2019, 16, 64. [Google Scholar]
- Cui, Y.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N.X. ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012, 12, 1443–1447. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-X.; Wang, G.-Z.; Sang, T.; Wang, L.-L. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.; Yin, S.; Wang, W.; Li, W.; Zhu, J.; Guan, J. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, L.; Zhao, D.; Ruan, Z.; Li, Q.; Yang, Y.; Qiu, M. Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt. Lett. 2014, 39, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Greffet, J.-J.; Carminati, R.; Joulain, K.; Mulet, J.-P.; Mainguy, S.; Cheng, Y. Coherent emission of light by thermal sources. Nat. Cell Biol. 2002, 416, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zhao, Y. Absorption manipulation in a narrowband infrared absorber based on the hybridization of gap plasmon and fabry-perot resonance. Plasmonics 2015, 10, 1219–1223. [Google Scholar] [CrossRef]
- Zhao, D.; Meng, L.; Gong, H.; Chen, X.; Chen, Y.; Yan, M.; Li, Q.; Qiu, M. Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Appl. Phys. Lett. 2014, 104, 221107. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, D.; Yang, Y.; de Abajo, F.J.G.; Li, Q.; Ruan, Z.; Min, Q. Gain-assisted plasmon resonance narrowing and its application in sensing. Phys. Rev. Appl. 2019, 11, 044030. [Google Scholar] [CrossRef] [Green Version]
- Feng, A.; Yu, Z.; Sun, X. Ultranarrow-band metagrating absorbers for sensing and modulation. Opt. Express 2018, 26, 28197–28205. [Google Scholar] [CrossRef]
- He, X.; Jie, J.; Yang, J.; Chen, Y.; Han, Y.; Zhang, S. Suppressing the unwanted resonance mode in a metal-insulator-metal structure using fine-structured gratings. Opt. Express 2019, 27, 15298–15308. [Google Scholar] [CrossRef]
- Li, R.; Wu, D.; Liu, Y.; Yu, L.; Yu, Z.; Ye, H. Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating. Nanoscale Res. Lett. 2017, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.-L.; Zhao, Y.; Zhang, X.; Chen, Z. An ultra-narrowband absorber with a compound dielectric grating and metal substrate. Opt. Commun. 2017, 385, 172–176. [Google Scholar] [CrossRef]
- Liao, Y.; Zhao, Y. An ultra-narrowband absorber with a dielectric-dielectric-metal structure based on guide-mode reso-nance. Opt. Commun. 2017, 382, 307–310. [Google Scholar] [CrossRef]
- Ali, M.O.; Tait, N.; Gupta, S. High-Q all-dielectric thermal emitters for mid-infrared gas-sensing applications. J. Opt. Soc. Am. A 2017, 35, 119–124. [Google Scholar] [CrossRef]
- Liao, Y.; Zhao, Y. Ultra-narrowband dielectric metamaterial absorber for sensing based on cavity-coupled phase reso-nance. Results Phys. 2020, 17, 103072. [Google Scholar] [CrossRef]
- Qin, F.; Chen, Z.; Chen, X.; Yi, Z.; Yao, W.; Duan, T.; Wu, P.; Yang, H.; Li, G.; Yi, Y. A tunable triple-band near-infrared metamaterial absorber based on Au nano-cuboids array. Nanomaterials 2020, 10, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Chen, Z.; Yang, H.; Yi, Z.; Chen, X.; Yao, W.; Duan, T.; Wu, P.; Li, G.; Yi, Y. Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes. Nanomaterials 2020, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Privitera, S.; Rimini, E.; Zonca, R. Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films stud-ied by in situ resistance measurements. Appl. Phys. Lett. 2004, 85, 3044–3046. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Zhang, Y.; Zhang, Y.; Cao, M. Tunable bifunctional terahertz metamaterial device based on dirac semimetals and vanadium dioxide. Opt. Express 2020, 28, 17434–17448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, T.; Zhu, S. Graphene-based plasmonic modulator on a groove-structured metasurface. Opt. Lett. 2017, 42, 2247–2250. [Google Scholar] [CrossRef]
- Jia, Z.-X.; Shuai, Y.; Xu, S.-D.; Tan, H.-P. Graphene-based tunable metamaterial filter in infrared region. Smart Sci. 2016, 4, 127–133. [Google Scholar] [CrossRef]
- Liao, Y.-L.; Zhao, Y. Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber. Opt. Express 2017, 25, 32080–32089. [Google Scholar] [CrossRef]
- Xu, K.; Li, J.; Zhang, A.; Chen, Q. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 2020, 28, 11482–11492. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tian, Z.; Lu, Y.; Xu, Y.; Zhang, X.; Ouyang, C.; Gu, J.; Han, J.; Zhang, W. Electrically tunable perfect terahertz ab-sorber based on a graphene salisbury screen hybrid metasurface. Adv. Opt. Mater. 2020, 8, 1900660. [Google Scholar] [CrossRef]
- Cai, Y.; Guo, Y.; Zhou, Y.; Huang, X.; Yang, G.; Zhu, J. Tunable dual-band terahertz absorber with all-dielectric configura-tion based on graphene. Opt. Express 2020, 28, 31524–31534. [Google Scholar] [CrossRef]
- Khavasi, A. Ultra-sharp transmission resonances in periodic arrays of graphene ribbons in te polarization. J. Light. Technol. 2015, 34, 1020–1024. [Google Scholar] [CrossRef]
- Chang, J.-H.; Wang, T.-T.; Zhang, C.; Ge, Y.-X.; Tao, Z.-H.; Jian-Hua, C.; Ting-Ting, W.; Chuang, Z.; Yi-Xian, G.; Zai-Hong, T. Compact and tunable mid-ir light source based on a dual-wavelength fiber laser. Chin. Phys. Lett. 2013, 30, 114206. [Google Scholar] [CrossRef]
- Cao, Y.; Hu, E.; Xing, J.; Liu, L.; Gu, T.; Zheng, J.; Yu, K.; Wei, W. Optical constants of restored and etched reduced graphene oxide: A spectroscopic ellipsometry study. Opt. Mater. Express 2018, 9, 234–243. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Y.; Du, K.; Bai, S.; Tian, J.; Pan, M.; Ye, H.; Qiu, M.; Li, Q. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals. Appl. Phys. Lett. 2017, 110, 101101. [Google Scholar] [CrossRef]
- Liao, Y.-L.; Zhao, Y. Ultra-narrowband mid-infrared absorber based on Mie resonance in dielectric metamaterials. Can. J. Phys. 2020, 98, 484–487. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K.; Grann, E.B.; Pommet, D.A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068–1076. [Google Scholar] [CrossRef]
- Amotchkina, T.; Trubetskov, M.; Hahner, D.; Pervak, V. Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt. 2020, 59, A40–A47. [Google Scholar] [CrossRef] [PubMed]
- Malitson, I.H. A redetermination of some optical properties of calcium fluoride. Appl. Opt. 1963, 2, 1103–1107. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef] [Green Version]
- Winn, J.N.; Fink, Y.; Fan, S.; Joannopoulos, J.D. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 1998, 23, 1573–1575. [Google Scholar] [CrossRef] [PubMed]
- Born, M.; Wolf, E. Principles of Optics, 6th ed.; Pergamon Press: New York, NY, USA, 1980. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.-L.; Wang, H.; Zhao, Y.; Chen, X.; Wu, J.; Chen, Z. Small-Angle Ultra-Narrowband Tunable Mid-Infrared Absorber Composing from Graphene and Dielectric Metamaterials. Coatings 2021, 11, 825. https://doi.org/10.3390/coatings11070825
Liao Y-L, Wang H, Zhao Y, Chen X, Wu J, Chen Z. Small-Angle Ultra-Narrowband Tunable Mid-Infrared Absorber Composing from Graphene and Dielectric Metamaterials. Coatings. 2021; 11(7):825. https://doi.org/10.3390/coatings11070825
Chicago/Turabian StyleLiao, Yan-Lin, Huilin Wang, Yan Zhao, Xiang Chen, Jin Wu, and Zhenggen Chen. 2021. "Small-Angle Ultra-Narrowband Tunable Mid-Infrared Absorber Composing from Graphene and Dielectric Metamaterials" Coatings 11, no. 7: 825. https://doi.org/10.3390/coatings11070825
APA StyleLiao, Y.-L., Wang, H., Zhao, Y., Chen, X., Wu, J., & Chen, Z. (2021). Small-Angle Ultra-Narrowband Tunable Mid-Infrared Absorber Composing from Graphene and Dielectric Metamaterials. Coatings, 11(7), 825. https://doi.org/10.3390/coatings11070825