Analysis of the Anti-Skid Properties of New Airfield Pavements in Aspect of Applicable Requirements
Abstract
:1. Introduction
- Assessments of the friction characteristics of artificial pavements covered with a layer of snow, slush, ice or frost;
- Assessment of the friction characteristics of the pavements for construction and operation purposes.
- Assessed to verify the friction characteristics of the pavement on a new or renovated runway;
- Periodically assessed in order to determine the slipperiness of an artificial runway.
2. Materials and Methods
- Roughness evaluation module—measurement of the friction coefficient;
- Texture depth assessment module—measurement of the new CMPTD coefficient defining the continuous average depth of the profile and texture.
- “By age”—assignment of the (CMPTD and µ) values obtained from the field tests on the basis of actual pavement age;
- “By value”—assignment of the (CMPTD and µ) values obtained from the field tests on the basis of µ values, fulfilling required criteria for the specific age “N”.
- X1P, X2P, X3P, X4P—mean values obtained during field measurements;
- X1K, X2K—known criteria values for the µ coefficient;
- X3K, X4K—the search criteria values for the CMPTD coefficient;
- XK—final, searched criterion value for the CMPTD coefficient.
- X1P(1...n)—the set of individual values for the X1P mean value;
- X2P(1...n)—the set of individual values for the X2P mean value;
- X3P(1...n)—the set of individual values for the X3P mean value;
- X4P(1...n)—the set of individual values for the X4P mean value.
- “By age” method—0.20;
- “By value” method—0.80.
3. Results
3.1. Criterion for the CMPTD Coefficient
- For asphalt concrete pavements—0.67 mm;
- For pavements made in the technology of cement concrete—0.28 mm.
3.2. Transformation Equations
- For asphalt concrete pavements—0.82 mm;
- For cement concrete pavements—0.61 mm.
4. Discussion
- For pavements made in asphalt concrete technology—0.82 mm;
- For pavements made in cement concrete technology—0.61 mm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Easy Access Rules for Aerodromes (Regulation (EU) No 139/2014); European Union Aviation Safety Agency (EASA): Cologne, Germany, 2019.
- Annex 14 to the Convention on International Civil Aviation, Aerodromes, I—Aerodrome Design and Operations, 8th ed.; ICAO: Montreal, QC, Canada, 2018.
- Doc. 9157 Aerodrome Design Manual Part 1—Runways, 4th ed.; ICAO: Montreal, QC, Canada, 2020.
- Doc. 9137 Airport Services Manual Part 2—Pavement Surface Conditions, 4th ed.; ICAO: Montreal, QC, Canada, 2002.
- Advisory Circular No: 150/5320-12C; U.S. Department of Transportation, FAA: Washington, DC, USA, 1997.
- NO-17-A501: 2015 Nawierzchnie Lotniskowe. Badanie Szorstkości (Airfield Pavement. Friction Testing); Military Centre for Standardization, Quality and Codification: Warsaw, Poland, 2015.
- Annex to ED Decision 2021/003/R “AMC & GM to Authority, Organisation and Operations Requirements for Aerodromes—Issue 1, Amendment 5”; EASA: Cologne, Germany, 2021.
- PN-EN 13036-1: 2010 Cechy Powierzchniowe Nawierzchni Drogowych i Lotniskowych. Metody Badań. Część 1: PomiarGłębokości Makrotekstury Metodą Objętościową (EN 13036-1:2010 Road and Airfield Surface Characteristics—Test Methods—Part I: Measurement of Pavement Surface Macrotexture Depth Using a Volumetric Patch Technique); Polish Committee for Standardization: Warsaw, Poland, 2010.
- PN-EN ISO 13473-1: 2019-04 Charakterystyka Tekstury Nawierzchni Przy Użyciu Profili Powierzchniowych. Część 1: Określanie średniej głębokości profilu (EN ISO 13473-1:2019 Characterization of Pavement Texture by Use of Surface Profiles—Part I: Determination of Mean Profile Depth); Polish Committee for Standardization: Warsaw, Poland, 2019.
- Wamblod, J.C.; Antle, C.E.; Henry, J.J.; Rado, Z. International PIARC Experiment to Compare and Harmonize Texture and Skid Resistance Measurements (01.04.T); PIARC: Paris, France, 1995. [Google Scholar]
- National Cooperative Highway Research Program, Guide for Pavement Friction, Contractor’s Final Report for NCHRP Project 01-43; The National Academies Press: Washington, DC, USA, 2009.
- ASTM E965 Standard Test Method for Measuring Pavement Macro-Texture Depth Using a Volumetric Technique; ASTM International: Montgomery, PA, USA, 2015.
- ASTM E2380/E2380M-15 Standard Test Method for Measuring Pavement Texture Drainage Using an Outflow Meter; ASTM International: Montgomery, PA, USA, 2015.
- ASTM E2157-15 Standard Test Method for Measuring Pavement Macrotexture Properties Using the Circular Track Meter; ASTM International: Montgomery, PA, USA, 2015.
- Comfort, G.; Rado, Z.; Townshend, T.; Mazur, A. Final Report 1—Summary of Findings and Recommendations. In Runway Friction Characteristics Measurement and Aircraft Braking (RuFAB); Research Project EASA 2008/4; EASA: Cologne, Germany, 2010. [Google Scholar]
- Comfort, G.; Rado, Z.; Townshend, T.; Mazur, A. Final Report 2—Documentation and Taxonomy. In Runway Friction Characteristics Measurement and Aircraft Braking (RuFAB); Research Project EASA 2008/4; EASA: Cologne, Germany, 2010. [Google Scholar]
- Comfort, G.; Rado, Z.; Townshend, T.; Mazur, A. Final report volume 3—functional friction. In Runway Friction Characteristics Measurement and Aircraft Braking (RuFAB); Research Project EASA 2008/4; EASA: Cologne, Germany, 2010. [Google Scholar]
- Comfort, G.; Rado, Z.; Townshend, T.; Mazur, A. Final report volume 4—operational friction. In Runway Friction Characteristics Measurement and Aircraft Braking (RuFAB); Research Project EASA 2008/4; EASA: Cologne, Germany, 2010. [Google Scholar]
- Wasilewska, M. Wpływ charakterystyki kruszywa na właściwości przeciwpoślizgowe nawierzchni drogowych (The Influence of Aggregate Characteristics on the Anti-Skid Properties of Road Surfaces). Ph.D. Dissertation, Bialystok University of Technology, Białystok, Poland, 2011. [Google Scholar]
- Gardziejczyk, W.; Wasilewska, M.; Gierasimiuki, P.; Motylewicz, M. Przegląd urządzeń do oceny właściwości przeciwpoślizgowych nawierzchni drogowych (Review of devices for assessing the anti-skid properties of road surfaces). In Proceedings of the Conference LVIII Technical Road Days, Białystok, Poland, 18-20 November 2015. [Google Scholar]
- Wasilewska, M.; Gardziejczyk, W.; Gierasimiuki, P.; Motylewicz, M. Ocena właściwości przeciwpoślizgowych nawierzchni drogowych przy wykorzystaniu urządzeń TWO, CTM i DFT (Evaluation of skid resistance by using TWO, CTM, DFT devices). J. Civ. Eng. Environ. Archit. 2016, 63, 375–382. [Google Scholar]
- Wasilewska, M.; Gardziejczyk, W.; Gierasimiuki, P.; Motylewicz, M. Evaluation of skid resistance using CTM, DFT and SRT-3 devices. Transp. Res. Procedia 2016, 14, 3050–3059. [Google Scholar] [CrossRef] [Green Version]
- Wasilewska, M. Analysis of skid resistance of road pavements in the initial period of its life. Bud. Archit. 2014, 13, 285–292. [Google Scholar] [CrossRef]
- Wasilewsk, M.; Gardziejczyki, W.; Gierasimiuk, P. Evaluation of skid resistance of exposed aggregate concrete pavement in the initial exploitation period. Roads Bridges 2017, 16, 295–308. [Google Scholar]
- Wasilewsk, M.; Gardziejczyki, W.; Gierasimiuk, P. Assesstment of skid resistance using DFTester and CTMeter. In Proceedings of the International Conference Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar]
- D’Apuzzo, M.; Evangelisti, A.; Flintsch, G.; Izeppi, E.; Mo-grovejo, D.; Nicolosi, V. Evaluation of variability of macrotexture with different laser-based devices. In Proceedings of the Conference Information Airfield and Highway Pavements, Miami, FL, USA, 7–10 June 2015. [Google Scholar]
- Ueckermann, A.; Wang, D.; Oeser, M.; Steinauer, B. Calculation of skid resistance from texture measurements. J. Traffic Transp. Eng. 2015, 2, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Copenhaver, T.; Hempel, P.; Mikhail, M. Development of texture measurement system based on continuous profiles from three-dimensional scanning system. Transp. Res. Rec. J. Transp. Res. Board 2013, 2367, 13–22. [Google Scholar] [CrossRef]
- Hong, F.; Huang, Y.R. Measurement and characterization of asphalt pavement surface macrotexture using three dimensional laser scanning technology. J. Test. Eval. 2014, 42, 881–890. [Google Scholar] [CrossRef]
- Kouchaki, S.; Roshani, H.; Prozzi, J.; Zuniga-Garcia, N.; Hernandez, J. Field investigation of relationship between pavement surface texture and friction. J. Transp. Res. Board 2018, 2672, 395–407. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Qiang, J. Geometric texture indicators for safety on AC pavements with 1 mm 3D laser texture data. Int. J. Pavement Res. Technol. 2016, 9, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Čelko, J.; Kovac, M.; Kotek, P. Analysis of the pavement surface texture by 3D Scaner. Transp. Res. Procedia 2016, 14, 2994–3003. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Hossain, M.; Miller, R. Evaluation of pavement surface texture at the network level. Nondestruct. Test. Eval. 2019, 34, 87–98. [Google Scholar] [CrossRef]
- Li, Q.J.; Zhan, Y.; Yang, G.; Wang, K. Pavement skid resistance as a function of pavement surface and aggregate texture properties. Int. J. Pavement Eng. 2020, 21, 1159–1169. [Google Scholar] [CrossRef]
- Meegoda, J.; Gao, S. Evaluation of pavement skid resistance using high speed texture measurement. J. Traffic Transp. Eng. 2015, 2, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Instruction Manual scanCONTROL 26xx; Micro Epsilon Messtechnik: Ortenburg, Germany, 2008.
- Wesołowski, M.; Blacha, K.; Iwanowski, P. Impact of Airfield Pavement’s Operability on Its Anti-skid Properties. Research Methods and Solutions to Current Transport Problems. In Proceedings of the International Scientific Conference Transport of the 21st Century, Ryn, Poland, 9–12 June 2019. [Google Scholar]
- Wesołowski, M.; Blacha, K. Estimating the impact of texture depth on the roughness of cement concrete airfield pavements. J. Konbin 2019, 49, 341–362. [Google Scholar] [CrossRef] [Green Version]
- Blacha, K.; Wesołowski, M. Skid resistance properties of airfield pavements in the light of applicable nor-mative rules. J. Konbin 2019, 49, 255–280. [Google Scholar] [CrossRef] [Green Version]
- Wesołowski, M.; Blacha, K. Evaluation of airfield pavement micro and macrotexture in the light of skid resistance (friction coefficient) measurements. In Proceedings of the MATEC Web of Conferences, Krynica, Poland, 16–20 September 2019; Volume 262. [Google Scholar]
Measured Coefficient (μ) | Estimated Surface Friction | Code |
---|---|---|
0.40 and above | Good | 5 |
0.39 to 0.36 | Medium to good | 4 |
0.35 to 0.30 | Medium | 3 |
0.29 to 0.26 | Medium to poor | 2 |
0.25 and below | Poor | 1 |
Measuring Device | Measuring Speed (km/h) | Coefficient of Friction µ | ||
---|---|---|---|---|
Design Values for New Pavements | Values for Planning Corrective Actions | Minimum Values | ||
Surface Friction Tester Trailer and Airport Surface Friction Tester Vehicle (ASFT) | 65 | 0.70 | 0.50 | 0.40 |
95 | 0.60 | 0.40 | 0.32 |
Measurement Device | 65 km/h | 95 km/h | ||
---|---|---|---|---|
Minimum | Maintenance Planning | Minimum | Maintenance Planning | |
Airport Surface Friction Tester | 0.50 | 0.60 | 0.34 | 0.47 |
Dynatest Consulting Inc. Dynatest Runway Friction Tester | 0.50 | 0.60 | 0.41 | 0.54 |
Findlay, Irvine, Ltd. Griptester Friction Meter | 0.43 | 0.53 | 0.24 | 0.36 |
Halliday Technologies RT3 | 0.45 | 0.55 | 0.42 | 0.52 |
Moventor Oy Inc. BV-11 Skiddometer | 0.50 | 0.60 | 0.34 | 0.47 |
Mu Meter | 0.42 | 0.52 | 0.26 | 0.38 |
NAC Dynamic Friction Tester | 0.42 | 0.52 | 0.28 | 0.38 |
Norsemeter RUNAR (operated at fixed 16% slip) | 0.45 | 0.52 | 0.32 | 0.42 |
Automatic Friction Measuring Device (Instrument de Mesure Automatique de Glissance)—IMAG | 0.30 | 0.40 | 0.20 | 0.30 |
Document | Texture Depth (mm) |
---|---|
Annex 14 to the Convention on the International Civil Aviation, Aerodromes Volume I—Aerodrome Design and Operation (ICAO) [2] | ≥1.00 |
Doc. 9157 AN/901 Aerodrome Design Manual Part 1—Runways (ICAO) [3] | |
Easy Access Rules for Aerodromes (Regulation (EU) No 139/2014) (EASA) [1] | |
Doc. 9137 AN/898 Airport Service Manual Part 2—Pavement Surface Conditions (ICAO) [4] | <1.00 mm |
Advisory Circular no: 150/5320-12C, U.S. Department of Transportation (FAA) [5] | ≥1.14 mm |
Aviation Organization | Runway Classification | Texture Depth (mm) |
---|---|---|
ICAO, EASA | A | 0.10–0.14 |
B | 0.15–0.24 | |
C | 0.25–0.50 | |
D | 0.51–1.00 | |
E | 1.01–2.54 |
Coefficient | Test Speed (km/h) | Identification | Measurement Values (mm) | |
---|---|---|---|---|
”By Age” | ”By Value” | |||
µ | 65 | X1P | 0.68 | 0.76 |
95 | X2P | 0.80 | 0.74 | |
CMPTD | 65 | X3P | 1.08 | 0.66 |
95 | X4P | 0.27 | 0.50 |
Coefficient | Test Speed (km/h) | Identification | Measurement Values (mm) | |
---|---|---|---|---|
”By Age” | ”By Value” | |||
µ | 65 | X1P | 0.74 | 0.74 |
95 | X2P | |||
CMPTD | 65 | X3P | 0.67 | 0.63 |
95 | X4P |
Coefficient | Test Speed (km/h) | Identification | Measurement Values (mm) | |
---|---|---|---|---|
”By Age” | ”By Value” | |||
µ | 65 | X1P | 0.77 | 0.76 |
95 | X2P | 0.75 | 0.71 | |
CMPTD | 65 | X3P | 0.28 | 0.30 |
95 | X4P | 0.10 | 0.28 |
Coefficient | Test Speed (km/h) | Identification | Measurement Values (mm) | |
---|---|---|---|---|
”By Age” | ”By Value” | |||
µ | 65 | X1P | 0.76 | 0.73 |
95 | X2P | |||
CMPTD | 65 | X3P | 0.19 | 0.29 |
95 | X4P |
Analysis Method | Analysis Model | Identification | Search Criterion Values (mm) | |||
---|---|---|---|---|---|---|
”By Age” | ”By Value” | Mean | ||||
- | - | - | No Weights | With Weights | ||
Proportion | Model I | XK | 0.66 | 0.50 | 0.58 | 0.54 |
Model II | 0.59 | 0.56 | 0.58 | 0.57 | ||
Estimation | Model I | 0.70 | 0.68 | 0.69 | 0.68 | |
Model II | 1.14 | 0.83 | 0.99 | 0.89 | ||
Mean: | 0.77 | 0.64 | 0.71 | 0.67 |
Analysis Method | Analysis Model | Identification | Search Criterion Values (mm) | |||
---|---|---|---|---|---|---|
”By Age” | ”By Value” | Mean | ||||
- | - | - | No Weights | With Weights | ||
Proportion | Model I | XK | 0.17 | 0.26 | 0.21 | 0.24 |
Model II | 0.16 | 0.26 | 0.21 | 0.24 | ||
Estimation | Model I | 0.19 | 0.36 | 0.27 | 0.32 | |
Model II | 0.14 | 0.34 | 0.24 | 0.30 | ||
Mean: | 0.16 | 0.30 | 0.23 | 0.28 |
Test Speed (km/h) | Pavement Construction Technology | Strip (Sample) | Measurement Values (mm) | ||
---|---|---|---|---|---|
CMPTD | MPD | ETD | |||
65 | Asphalt concrete | 1 | 1.05 | 0.81 | 0.85 |
2 | 1.13 | 0.93 | 0.94 | ||
3 | 1.03 | 1.11 | 1.09 | ||
4 | 1.21 | 1.30 | 1.28 | ||
5 | 0.95 | 1.04 | 1.03 | ||
6 | 1.11 | 0.89 | 0.91 | ||
Mean: | 1.08 | 1.01 | 1.02 |
Test Speed (km/h) | Pavement Construction Technology | Strip (Sample) | Measurement Values (mm) | ||
---|---|---|---|---|---|
CMPTD | MPD | ETD | |||
95 | Asphalt concrete | 1 | 0.27 | 0.72 | 0.75 |
2 | 0.26 | 0.66 | 0.72 | ||
3 | 0.26 | 0.77 | 0.76 | ||
4 | 0.32 | 0.76 | 0.80 | ||
5 | 0.25 | 0.73 | 0.78 | ||
6 | 0.28 | 0.62 | 0.65 | ||
Mean: | 0.27 | 0.71 | 0.74 |
Test Speed (km/h) | Pavement Construction Technology | Strip (Sample) | Measurement Values (mm) | ||
---|---|---|---|---|---|
CMPTD | MPD | ETD | |||
65 | Cement concrete | 1 | 0.27 | 0.42 | 0.54 |
2 | 0.26 | 0.45 | 0.56 | ||
3 | 0.28 | 0.59 | 0.67 | ||
4 | 0.28 | 0.55 | 0.64 | ||
5 | 0.29 | 0.77 | 0.82 | ||
6 | 0.28 | 0.37 | 0.50 | ||
Mean: | 0.28 | 0.53 | 0.62 |
Test Speed (km/h) | Pavement Construction Technology | Strip (Sample) | Measurement Values (mm) | ||
---|---|---|---|---|---|
CMPTD | MPD | ETD | |||
95 | Cement concrete | 1 | 0.08 | 0.28 | 0.43 |
2 | 0.10 | 0.26 | 0.41 | ||
3 | 0.10 | 0.25 | 0.40 | ||
4 | 0.06 | 0.24 | 0.39 | ||
5 | 0.11 | 0.23 | 0.39 | ||
6 | 0.15 | 0.24 | 0.39 | ||
Mean: | 0.10 | 0.25 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieja, M.; Wesołowski, M.; Blacha, K.; Iwanowski, P. Analysis of the Anti-Skid Properties of New Airfield Pavements in Aspect of Applicable Requirements. Coatings 2021, 11, 778. https://doi.org/10.3390/coatings11070778
Zieja M, Wesołowski M, Blacha K, Iwanowski P. Analysis of the Anti-Skid Properties of New Airfield Pavements in Aspect of Applicable Requirements. Coatings. 2021; 11(7):778. https://doi.org/10.3390/coatings11070778
Chicago/Turabian StyleZieja, Mariusz, Mariusz Wesołowski, Krzysztof Blacha, and Paweł Iwanowski. 2021. "Analysis of the Anti-Skid Properties of New Airfield Pavements in Aspect of Applicable Requirements" Coatings 11, no. 7: 778. https://doi.org/10.3390/coatings11070778
APA StyleZieja, M., Wesołowski, M., Blacha, K., & Iwanowski, P. (2021). Analysis of the Anti-Skid Properties of New Airfield Pavements in Aspect of Applicable Requirements. Coatings, 11(7), 778. https://doi.org/10.3390/coatings11070778