A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges
Abstract
:1. Introduction
2. Synthetic Polymer Coatings
2.1. Polylactic Acid (PLA) Coated on Mg Alloy
2.2. Poly (Lactide-Co-Glycolic) Acid (PLGA) Coated on Mg-Based Alloy
2.3. Polycaprolactone (PCL) Coated on Mg-Based Alloy
3. Natural Polymer Coatings
3.1. Chitosan (CS) Coated on Mg-Based Alloy
3.2. Collagen Coated on Mg-Based Alloy
3.3. Gelatin Coated on Mg-Based Alloy
3.4. Silk Fibroin Coated on Mg-Based Alloy
4. Composite Polymer Coatings
5. Polymer–Drug Coatings
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sezer, N.; Evis, Z.; Kayhan, S.M.; Tahmasebifar, A.; Koç, M. Review of magnesium-based biomaterials and their applications. J. Magnes. Alloys 2018, 6, 23–43. [Google Scholar] [CrossRef]
- Razzaghi, M.; Kasiri-Asgarani, M.; Bakhsheshi-Rad, H.R.; Ghayour, H. Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg–3Zn–0.5 Ag alloy: Prepared by mechanical alloying for implant applications. Compos. B Eng. 2020, 190, 107947. [Google Scholar] [CrossRef]
- Gogheri, M.S.; Kasiri-Asgarani, M.; Bakhsheshi-Rad, H.R.; Ghayour, H.; Rafiei, M. In vitro corrosion behavior and cytotoxicity of polycaprolactone–akermanite-coated friction-welded commercially pure Ti/AZ31 for orthopedic applications. J. Mater. Eng. Perform. 2020, 29, 6053–6065. [Google Scholar] [CrossRef]
- Kabir, H.; Munir, K.; Wen, C.; Li, Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact. Mater. 2021, 6, 836–879. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Babaei, K.; Molaei, M. Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review. Surf. Interfaces 2020, 18, 100441. [Google Scholar] [CrossRef]
- Mei, D.; Lamaka, S.V.; Lu, X.; Zheludkevich, M.L. Selecting medium for corrosion testing of bioabsorbable magnesium and other metals–a critical review. Corros. Sci. 2020, 1, 108722. [Google Scholar] [CrossRef]
- Yee, D.T.; Koon, J.N.; Huang, Y.; Hou, P.W.; Leo, H.L.; Venkatraman, S.S.; Ang, H.Y. Bioresorbable metals in cardiovascular stents: Material insights and progress. Materialia 2020, 22, 100727. [Google Scholar]
- Sezer, N.; Evis, Z.; Koç, M. Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. J. Magnes. Alloys 2021, 9, 392–415. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C 2016, 68, 948–963. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Koons, G.L.; Cheng, G.; Zhao, L.; Mikos, A.G.; Cui, F. A review on the exploitation of biodegradable magnesium-based composites for medical applications. Biomed. Mater. 2018, 13, 022001. [Google Scholar] [CrossRef]
- Li, H.; Yang, H.; Zheng, Y.; Zhou, F.; Qiu, K.; Wang, X. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater. Des. 2015, 83, 95–102. [Google Scholar] [CrossRef]
- Ali, M.; Hussein, M.A.; Al-Aqeeli, N. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. J. Magnes. Alloys 2019, 792, 1162–1190. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Jiang, H.B.; Kim, J.E.; Zhang, J.E.; Kim, K.M.; Kwon, J.S. Bioresorbable magnesium-reinforced PLA membrane for guided bone/ tissue regeneration. J. Mech. Behav. Biomed. Mater. 2020, 112, 104061. [Google Scholar] [CrossRef]
- Adel-Gawad, S.; Shoeib, M.A. Corrosion studies and microstructure of Mg−Zn−Ca alloys for biomedical applications. Surf. Interfaces 2019, 14, 108–116. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Khan, M.F.; Saadeh, Y.; Kay, C.M.; Gupta, R.K.; Kasar, A.K.; Kumar, P.; Misra, M.; Menezes, P.L.; Bakhsheshi-Rad, H.R. Enhanced corrosion resistance and surface bioactivity of AZ31B Mg alloy by high pressure cold sprayed monolayer Ti and bilayer Ta/Ti coatings in simulated body fluid. Mater. Chem. Phys. 2020, 256, 123627. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Yajid, M.A.; Gupta, R.K.; Yusof, N.M.; Bakhsheshi-Rad, H.R.; Ghandvar, H.; Ghasemi, E. Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy. Trans. Nonferr. Met. Soc. China 2018, 28, 1571–1581. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Khan, M.F.; Saadeh, Y.; Kay, C.M.; Kasar, A.K.; Kumar, P.; Esteves, L.; Misra, M.; Menezes, P.; Kalvala, P.R.; et al. Modification of surface hardness, wear resistance and corrosion resistance of cold spray Al coated AZ31B Mg alloy using cold spray double layered Ta/Ti coating in 3.5 wt % NaCl solution. Corros. Sci. 2020, 176, 109029. [Google Scholar] [CrossRef]
- Li, L.Y.; Cui, L.Y.; Zeng, R.C.; Li, S.Q.; Chen, X.B.; Zheng, Y.; Kannan, M.B. Advances in functionalized polymer coatings on biodegradable magnesium alloys—A review. Acta Biomater. 2018, 79, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Karamian, E.; Kasiri-Asgarani, M.; Ghomi, H. A study on the corrosion behavior and biological properties of polycaprolactone/bredigite composite coating on biodegradable Mg–Zn–Ca–GNP nanocomposite. Prog. Org. Coat. 2020, 147, 105822. [Google Scholar] [CrossRef]
- Kirkland, N.T.; Birbilis, N.; Staiger, M.P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936. [Google Scholar] [CrossRef]
- Farshid, S.; Kharaziha, M. Micro and nano-enabled approaches to improve the performance of plasma electrolytic oxidation coated magnesium alloys. J. Magnes. Alloys 2020. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, T.; Yu, X.; Sun, X.; Yang, H. Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: A review. J. Alloys Compds. 2021, 21, 160453. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, F.; Liu, X. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating. J. Alloys Compd. 2020, 4, 157010. [Google Scholar]
- Li, X.; Liu, X.; Wu, S.; Yeung, K.W.; Zheng, Y.; Chu, P.K. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater. 2016, 45, 2–30. [Google Scholar] [CrossRef]
- Singh, N.; Batra, U.; Kumar, K.; Mahapatro, A. Investigating TiO2-HA-PCL hybrid coating as an efficient corrosion resistant barrier of ZM21 Mg alloy. J. Magnes. Alloys 2021, 9, 627–646. [Google Scholar] [CrossRef]
- Zhou, H.; Liang, B.; Jiang, H.; Deng, Z.; Yu, K. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: From mechanism to application. J. Magnes. Alloys 2021. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Jain, A.; Jain, A.; Jain, S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J. 2019, 120, 109191. [Google Scholar] [CrossRef]
- Chang, B.; Ahuja, N.; Ma, C.; Liu, X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater. Sci. Eng. R 2017, 111, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.Y.; Hu, J.; Ding, Z.K.; Wang, C. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition. Appl. Surf. Sci. 2011, 257, 2051–2057. [Google Scholar] [CrossRef]
- Radha, R.; Sreekanth, D. Insight of magnesium alloys and composites for orthopedic implant applications—A review. J. Magnes. Alloys 2017, 5, 286–312. [Google Scholar] [CrossRef]
- Raquez, J.M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542. [Google Scholar] [CrossRef]
- Alabbasi, A.; Liyanaarachchi, S.; Kannan, M.B. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Film. 2012, 520, 6841–6844. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, L.; Wu, C.; Qin, L.; Ngai, T. Biodegradable poly (L-lactic acid)(PLLA) coatings fabricated from nonsolvent induced phase separation for improving corrosion resistance of magnesium rods in biological fluids. Langmuir 2018, 34, 10684–10693. [Google Scholar] [CrossRef]
- Zhang, J.; Pei, J.; Wang, H.; Shi, Y.; Niu, J.; Yuan, F.; Huang, H.; Zhang, H.; Yuan, G. A facile preparation of poly (lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application. ACS Appl. Matter. Interfaces 2017, 9, 9437–9448. [Google Scholar] [CrossRef]
- Li, B.; Zhang, K.; Yang, W.; Yin, X.; Liu, Y. Enhanced corrosion resistance of HA/CaTiO3/TiO2/PLA coated AZ31 alloy. J. Taiwan Inst. Chem. Eng. 2016, 59, 465–473. [Google Scholar] [CrossRef]
- Shi, P.; Niu, B.; Shanshan, E.; Chen, Y.; Li, Q. Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance. Surf. Coat. Technol. 2015, 262, 26–32. [Google Scholar] [CrossRef]
- Malayoglu, U.; Tekin, K.C.; Shrestha, S. Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys. Surf. Coat. Technol. 2010, 205, 1793–1798. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Ebrahimi-Kahrizsangi, R.; Daroonparvar, M.; Medraj, M. Fabrication and characterization of hydrophobic microarc oxidation/poly-lactic acid duplex coating on biodegradable Mg–Ca alloy for corrosion protection. Vacuum 2016, 125, 185–188. [Google Scholar] [CrossRef]
- Wei, Z.L.; Tian, P.; Liu, X.Y.; Zhou, B.X. In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy. J. Biomed. Mater. Res. Part B 2015, 103, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.C.; Cui, L.Y.; Jiang, K.; Liu, R.; Zhao, B.D.; Zheng, Y.F. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (l-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Appl. Mater. Interfaces 2016, 8, 10014–10028. [Google Scholar] [CrossRef]
- Yin, Z.Z.; Qi, W.C.; Zeng, R.C.; Chen, X.B.; Gu, C.D.; Guan, S.K.; Zheng, Y.F. Advances in coatings on biodegradable magnesium alloys. J. Magnes. Alloys 2020, 8, 42–65. [Google Scholar] [CrossRef]
- Li, J.N.; Cao, P.; Zhang, X.N.; Zhang, S.X.; He, Y.H. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J. Mater. Sci. 2010, 45, 6038–6045. [Google Scholar] [CrossRef]
- Chen, L.; Sheng, Y.; Zhou, H.; Li, Z.; Wang, X.; Li, W. Influence of a MAO+PLGA coating on biocorrosion and stress corrosion cracking behavior of a magnesium alloy in a physiological environment. Corros. Sci. 2019, 148, 134–143. [Google Scholar] [CrossRef]
- Razzaghi, M.; Kasiri-Asgarani, M.; Bakhsheshi-Rad, H.R.; Ghayour, H. In Vitro Bioactivity and Corrosion of PLGA/hardystonite Composite Coated Magnesium-Based Nanocomposite for Implant Applications. Int. J. Min. Met. Mater. 2021, 28, 168–178. [Google Scholar] [CrossRef]
- Shi, Y.; Pei, J.; Zhang, L.; Lee, B.K.; Yun, Y.; Zhang, J.; Li, Z.; Gu, S.; Park, K.; Yuan, G. Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents. Corros. Sci. 2017, 123, 297–309. [Google Scholar] [CrossRef]
- Palumboa, G.; Cusannoa, A.; Romeu, M.G.; Bagudanch, I.; Negrini, N.C.; Villa, T.; Farè, S. Point Incremental Forming and Electrospinning to produce biodegradable magnesium (AZ31) biomedical prostheses coated with porous PCL. Mater. Today Proc. 2019, 7, 394–401. [Google Scholar] [CrossRef]
- Yazdimamaghani, M.; Razavi, M.; Vashaee, D.; Tayebi, L. Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering. Mater. Lett. 2014, 132, 106–110. [Google Scholar] [CrossRef]
- Dai, Y.; Lu, Y.; Li, D.; Yu, K.; Jiang, D.; Yan, Y.; Chen, L.; Xiao, T. Effects of polycaprolactone coating on the biodegradable behavior and cytotoxicity of Mg–6%Zn–10%Ca3(PO4)2 composite in simulated body fluid. Mater. Lett. 2017, 198, 118–120. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Abdul-Kadir, M.R.; Daroonparvar, M.; Medraj, M. Corrosion and mechanical performance of double-layered nano-Al/PCL coating on Mg–Ca–Bi alloy. Vacuum 2015, 119, 95–98. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A.M.; Medraj, M. Preparation and performance of plasma/polymer composite coatings on magnesium alloy. J. Mater. Eng. Perform. 2016, 25, 3948–3959. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Kasiri-Asgarani, M.; Jabbarzare, S.; Iqbal, N.; Kadir, M.A. Deposition of nanostructured fluorine-doped hydroxyapatite–polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications. Mater. Sci. Eng. C 2016, 60, 526–537. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Abdul-Kadir, M.R.; Saud, S.N.; Kasiri-Asgarani, M.; Ebrahimi-Kahrizsangi, R. The Mechanical Properties and Corrosion Behavior of Double-Layered Nano Hydroxyapatite-Polymer Coating on Mg–Ca Alloy. J. Mater. Eng. Perform. 2015, 24, 4010–4021. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Daroonparvar, M.; Kadir, M.A.; Kasiri-Asgarani, M.; Staiger, M.P. Enhancement of corrosion resistance and mechanical properties of Mg–1.2Ca–2Bi via a hybrid silicon-biopolymer coating system. Surf. Coat. Tech. 2016, 301, 133–139. [Google Scholar] [CrossRef]
- Yuan, T.T.; Yu, J.; Cao, J.; Gao, F.; Zhu, Y.; Cheng, Y. Fabrication of a delaying biodegradable magnesium alloy-based esophageal stent via coating elastic polymer. Materials 2016, 9, 384–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdal-hay, A.; Amna, T.; Lim, J.K. Biocorrosion and osteoconductivity of PCL/nHA composite porous film-based coating of magnesium alloy. Solid State Sci. 2013, 18, 131–140. [Google Scholar] [CrossRef]
- Roshan, N.R.; Hassannejad, H.; Nouri, A. Corrosion and mechanical behavior of biodegradable PLA-cellulose nanocomposite coating on AZ31 magnesium alloy. Surf. Eng. 2021, 37, 236–245. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M.; Akbari, M.; Hadisi, Z.; Khoshnava, S.M.; Pagan, E.; Chen, X. Co-incorporation of graphene oxide/silver nanoparticle into poly- L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. Mater. Sci. Eng. C 2020, 111, 110812. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Akbaric, M.; Ismai, A.F.; Aziz, M.; Hadisi, Z.; Pagan, E.; Daroonparvar, M.R.; Chena, X. Coating biodegradable magnesium alloys with electrospun poly-L- lactic acid-akermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surf. Coat. Tech. 2019, 377, 124898. [Google Scholar] [CrossRef]
- Lin, L.H.; Lee, H.P.; Yeh, M.L. Characterization of a Sandwich PLGA-Gallic Acid-PLGA Coating on Mg Alloy ZK60 for Bioresorbable Coronary Artery Stents. Materials 2020, 13, 5538. [Google Scholar] [CrossRef]
- Liu, L.; Huang, B.; Liu, X.; Yuan, W.; Zheng, Y.; Li, Z.; Yeung, K.W.; Zhu, S.; Liang, Y.; Cui, Z.; et al. Photo-controlled degradation of PLGA/Ti3C2 hybrid coating on Mg–Sr alloy using near infrared light. Bioact. Mater. 2021, 6, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Song, Y.; Zhang, S.; Li, J.; Zhao, C.; Zhang, X. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation. Biomed. Mater. 2011, 6, 025005. [Google Scholar] [CrossRef]
- Park, M.; Lee, J.E.; Park, C.G.; Lee, S.H.; Seok, H.K.; Choy, Y.B. Polycaprolactone coating with varying thicknesses for controlled corrosion of magnesium. J. Coat. Technol. Res. 2013, 10, 695–706. [Google Scholar] [CrossRef]
- Iqbal, N.; Iqbal, S.; Iqbal, T.; Bakhsheshi-Rad, H.R.; Alsakkaf, A.; Kamil, A.; Kadir, M.R.A.; Idris, M.H.; Raghav, H.B. Zinc-doped hydroxyapatite−zeolite/polycaprolactone composites coating on magnesium substrate for enhancing in-vitro corrosion and antibacterial performance. Trans. Nonferrous Met. Soc. China 2020, 30, 123–133. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Shuang, C.P.; Berto, F. Preparation of poly (ε-caprolactone)-hydroxyapatite composite coating for improvement of corrosion performance of biodegradable magnesium. Mater. Des. Proc. Comm. 2020, 2, e170. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; Xu, D.; Liu, X. Mussel-inspired functionalization of PEO/PCL composite coating on abiodegradable AZ31 magnesium alloy. Colloids Surf. B: Biointerfaces 2016, 141, 327–337. [Google Scholar] [CrossRef]
- Makkar, P.; Kang, H.J.; Padalhin, A.R.; Park, I.; Moon, B.G.; Lee, B.T. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications. J. Mater. Sci. Mater. Med. 2018, 13, e0193927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Ismail, A.F.; Sharer, Z.; Abdul-Kadir, M.R.; Daroonparvar, M.; Saud, S.N.; Medraj, M. Synthesis and corrosion behavior of a hybrid bioceramic-biopolymer coating on biodegradable Mg alloy for orthopaedic implants. J. Alloys Compd. 2015, 648, 1067–1071. [Google Scholar] [CrossRef]
- Hahn, B.D.; Park, S.D.; Choi, J.J.; Ryu, J.; Yoon, W.H.; Choi, J.H.; Kim, H.E.; Kim, S.G. Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy. Surf. Coat. Tech. 2011, 205, 3112–3118. [Google Scholar] [CrossRef]
- Liangjian, C.; Jun, Z.; Kun, Y.; Chang, C.; Yilong, D.; Xueyan, Q.; Zhiming, Y. Improving of in vitro Biodegradation Resistance in a Chitosan Coated Magnesium Bio-composite. Rare Metal Mat. Eng. 2015, 44, 1862–1865. [Google Scholar] [CrossRef]
- Heise, S.; Höhlinger, M.; Hernández, Y.T.; Palacio, J.J.P.; Ortiz, J.A.R.; Wagener, V.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. Electrochim. Acta 2017, 232, 456–464. [Google Scholar] [CrossRef]
- Höhlinger, M.; Christa, D.; Zimmermann, V.; Heise, S.; Boccaccini, A.R.; Virtanen, S. Influence of proteins on the corrosion behavior of a chitosan-bioactive glass coated magnesium alloy. Mater. Sci. Eng. C 2019, 100, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.S.; Sankar, M.R.; Pandey, L.M. Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects. J. Magnes. Alloys 2020, 8, 999–1015. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Chen, X.; Ismail, A.F.; Aziz, M.; Abdolahi, E.; Mahmoodiyan, F. Improved antibacterial properties of an Mg–Zn–Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. Polym. Adv. Tech. 2019, 30, 1333–1339. [Google Scholar] [CrossRef]
- Jia, Z.J.; Xiong, P.; Shi, Y.Y.; Zhou, W.H.; Cheng, Y.; Zheng, Y.F.; Xi, T.F.; Wei, S.C. Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: A pH-responsive design. J. Mater. Chem. B 2016, 4, 2498–2511. [Google Scholar] [CrossRef]
- Caladoa, L.M.; Tarybaa, M.G.; Carmezima, M.J.; Montemora, M.F. Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy. Corros. Sci. 2018, 142, 12–21. [Google Scholar] [CrossRef]
- Bahatibieke, A.; Qin, H.; Cui, T.; Liu, Y.; Wang, Z. In vivo and in simulated body fluid degradation behavior and biocompatibility evaluation of anodic oxidation-silane-chitosan-coated Mg–4.0 Zn–0.8 Sr alloy for bone application. Mater. Sci. Eng. C 2021, 120, 111771. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Ying, W.S.; Razzaghi, M.; Sharif, S.; Ismail, A.F.; Berto, F. Improved Bacteriostatic and Anticorrosion Effects of Polycaprolactone/Chitosan Coated Magnesium via Incorporation of Zinc Oxide. Materials 2021, 14, 1930. [Google Scholar] [CrossRef]
- Bao, Q.; Zhao, L.; Jing, H.; Xu, Q. Microstructure of Hydroxyapatite/Collagen Coating on AZ31 Magnesium Alloy by a Solution Treatment. J. Biomimetics. Biomater. Biomed. Eng. 2017, 30, 30–38. [Google Scholar] [CrossRef]
- Park, C.H.; Pant, H.R.; Kim, C.S. Effect on corrosion behavior of collagen film/fiber coated AZ31 magnesium alloy. Dig. J. Nanomater. Bios. 2013, 8, 1227–1234. [Google Scholar]
- Córdoba, L.C.; Marques, A.; Taryba, M.; Coradin, T.; Montemor, F. Hybrid coatings with collagen and chitosan for improved bioactivity of Mg alloys. Surf. Coat. Tech. 2018, 341, 103–113. [Google Scholar] [CrossRef]
- Guo, Y.; Sub, Y.; Guc, R.; Zhangd, Z.; Lia, G.; Liana, J.; Rend, L. Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating. Surf. Coat. Tech. 2020, 401, 126318. [Google Scholar] [CrossRef]
- Barbeck, M.; Kuhnel, L.; Witte, F.; Pissarek, J.; Precht, C.; Xiong, X.; Krastev, R.; Wegner, N.; Walther, F.; Jung, O. Degradation, bone regeneration and tissue response of an innovative volume stable magnesium- supported GBR/GTR barrier membrace. Int. J. Mol. Sci. 2020, 21, 3098. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Latest Research advances in magnesium and magnesium alloys worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar]
- Guo, Y.; Jia, S.; Qiao, L.; Su, Y.; Gu, R.; Li, G.; Lian, J. Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications. J. Alloys Compd. 2020, 817, 152782. [Google Scholar] [CrossRef]
- Jothi, V.; Adesina, A.Y.; Kumar, A.M.; Rahman, M.M.; Nirmal Ram, J.S. Enhancing the biodegradability and surface protective performance of AZ31 Mg alloy using polypyrrole/gelatin composite coatings with anodized Mg surface. Surf. Coat. Tech. 2020, 380, 125139. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Ahmadi, T.; Dehaghanic, M.T.; Mohemia, K. Synthesis, Corrosion and Bioactivity Evaluation of Gelatin/Silicon and Magnesium Co-Doped Fluorapatite Nanocomposite Coating Applied on AZ31 Mg Alloy. Russ. J. Non-Ferr. Met. 2018, 59, 458–464. [Google Scholar] [CrossRef]
- Akram, M.; Arshad, N.; Aktan, M.K.; Braem, A. Alternating Current Electrophoretic Deposition of Chitosan–Gelatin–Bioactive Glass on Mg–Si–Sr Alloy for Corrosion Protection. ACS Appl. Bio Mater. 2020, 3, 7052–7060. [Google Scholar] [CrossRef]
- Qi, H.; Heise, S.; Zhou, J.; Schuhladen, K.; Yang, Y.; Cui, N.; Dong, R.; Virtanen, S.; Chen, Q.; Boccaccini, A.R.; et al. Electrophoretic deposition of bioadaptive drug delivery coatings on magnesium alloy for bone repair. ACS Appl. Mater. Interfaces 2019, 11, 8625–8634. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fanga, H.; Hang, C.; Sun, Y.; Peng, Z.; Weid, W.; Wang, Y. Fabrication and characterization of silk fibroin coating on APTES pretreated Mg–Zn–Ca alloy. Mater. Sci. Eng. C 2020, 110, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yagoshi, K.; Asakura, T.; Sasaki, M.; Niidome, T. Silk Fibroin as a Coating Polymer for Sirolimus-Eluting Magnesium Alloy Stents. ACS Appl. Bio Mater. 2020, 3, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Wang, C.; Zhou, S.; Li, G.; Tian, Y.; Suga, T. Exploration of the enhanced performances for silk fibroin/sodium alginate composite coatings on biodegradable Mg−Zn−Ca alloy. J. Magnes. Alloys 2020. [Google Scholar] [CrossRef]
- Wang, C.; Fang, H.; Qi, X.; Hang, C.; Sun, Y.; Peng, Z.; Wei, W.; Wang, Y. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation. Acta Biomater. 2019, 91, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Xiong, P.; Jia, Z.; Li, M.; Zhou, W.; Yan, J.; Wu, Y.; Cheng, Y.; Zheng, Y. Biomimetic Ca, Sr/P-doped silk fibroin films on Mg-1Ca alloy with dramatic corrosion resistance and osteogenic activities. ACS Biomater. Sci. Eng. 2018, 4, 3163–3176. [Google Scholar] [CrossRef]
- Bai, K.; Zhang, Y.; Fu, Z.; Cui, C.; Meng, E.; Guan, S.; Hu, J. Fabrication of chitosan /magnesium phosphate composite coating and the in vitro degradation properties of coated magnesium alloy. Mater. Lett. 2012, 73, 59–61. [Google Scholar] [CrossRef]
- Alaei, M.; Atapour, M.; Labbaf, S. Electrophoretic deposition of chitosan-bioactive glass nanocomposite coatings on AZ91 Mg alloy for biomedical applications. Prog. Org. Coat. 2020, 147, 105803. [Google Scholar] [CrossRef]
- Soleymani, F.; Emadi, R.; Sadeghzade, S.; Tavangarian, F. Applying Baghdadite/ PCL/ Chitosan Nanocomposite Coating on AZ91 Magnesium Alloy to Improve Corrosion Behavior Bioactivity and Biodegradability. Coatings 2019, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Chen, L.J.; Yu, K.; Chen, C.; Dai, Y.L.; Qiao, X.Y.; Yan, Y.; Yu, Z.M. Effects of chitosan coating on biocompatibility of Mg−6%Zn−10%Ca3(PO4)2 implant. Trans. Nonferrous Met. Soc. China 2015, 25, 824–831. [Google Scholar] [CrossRef]
- Gao, F.; Hub, Y.; Gong, Z.; Liua, T.; Gong, T.; Liua, S.; Zhang, C.; Quan, L.; Kaveendran, B.; Pan, C. Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. Mater. Sci. Eng. C 2019, 104, 109947. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, L.C.; Hélary, C.; Montemor, F.; Coradin, T. Bi-layered silane-TiO2/collagen coating to control biodegradation and biointegration of Mg alloys. Mater. Sci. Eng. C 2019, 94, 126–138. [Google Scholar] [CrossRef]
- Song, J.; Cui, X.; Jin, G.; Cai, Z.; Liu, E.; Li, X.; Chen, Y.; Lu, B. Self-healing conversion coating with gelatin–chitosan microcapsules containing inhibitor on AZ91D alloy. Surf. Eng. 2018, 34, 79–84. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Dou, J.; Yu, H.; Chen, C. Layer by layer assembled chitosan (TiO2)-heparin composite coatings on MAO-coated Mg alloys. Mater. Lett. 2020, 281, 128640. [Google Scholar] [CrossRef]
- Fang, H.; Wang, C.; Zhou, S.; Zheng, Z.; Lu, T.; Li, G.; Tian, Y.; Suga, T. Enhanced adhesion and anticorrosion of silk fibroin coated biodegradable Mg–Zn–Ca alloy via a two-step plasma activation. Corros. Sci. 2020, 168, 108466. [Google Scholar] [CrossRef]
- Chang, L.; Li, X.; Tang, X.; Zhang, H.; He, D.; Wang, Y.; Zhao, J.; Li, J.; Wang, J.; Zhu, S.; et al. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg–Zn–Y–Nd–Zr alloys for better corrosion resistance and cell behavior guidance. Front. Mater. Sci. 2020, 14, 413–425. [Google Scholar] [CrossRef]
- Xiong, P.; Yan, J.L.; Wang, P.; Jia, Z.; Zhou, W.; Yuan, W.; Li, Y.; Liu, Y.; Cheng, Y.; Chen, D.; et al. A pH-Sensitive Self-healing Coating for Biodegradable Magnesium Implants. Acta Biomater. 2019, 98, 160–173. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Egorkin, V.S.; Sidorova, M.V.; Gnedenkov, A.S. Composite polymer-containing protective coatings on magnesium alloy MA8. Corros. Sci. 2014, 85, 52–59. [Google Scholar] [CrossRef]
- Chen, P.; Sun, J.; Zhu, Y.; Yu, X.; Meng, L.; Li, Y.; Liu, X. Corrosion Resistance of Biodegradable Mg with a Composite Polymer Coating. J. Biomater. Sci. Polym. Ed. 2016, 27, 1763–1774. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhao, S.; Chen, M.Y.; Zhang, W.T.; Mao, J.L.; Zhao, Y.C.; Maitz, M.F.; Huang, N.; Wan, G.L. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corros. Sci. 2015, 96, 67–73. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, J.; Yuan, W.; Liu, X.; Tan, L.; Zheng, Y.; Yeung, K.W.; Wu, S. Metal–Organic Frameworks Incorporated Polycaprolactone Film for Enhanced Corrosion Resistance and Biocompatibility of Mg Alloy. ACS Sustain. Chem. Eng. 2019, 7, 18114–18124. [Google Scholar] [CrossRef]
- Rahimi, M.; Aghdam, R.M.; Sohi, M.H.; Rezayan, A.H.; Ettelaei, M. Improving biocompatibility and corrosion resistance of anodized AZ31 Mg alloy by electrospun chitosan/mineralized bone allograft (MBA) nanocoatings. Surf. Coat. Technol. 2021, 405, 126627. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Bala, N. Electrophoretic deposition of Fe3O4 nanoparticles incorporated hydroxyapatite-bioglass-chitosan nanocomposite coating on AZ91 Mg alloy. Mater. Today Commun. 2021, 26, 101870. [Google Scholar] [CrossRef]
- Jin, J.; Zhou, S.; Duan, H. Preparation and properties of heat treated FHA@ PLA composition coating on micro-oxidized AZ91D magnesium alloy. Surf. Coat. Tech. 2018, 349, 50–60. [Google Scholar] [CrossRef]
- Heise, S.; Wirth, T.; Höhlinger, M.; Hernánde, Y.T.; Ortiz, J.A.; Wagener, V.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition of chitosan/bioactive glass/silica coatings on stainless steel and WE43 Mg alloy substrates. Surf. Coat. Tech. 2018, 344, 553–563. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, L.; Liu, W.; Qin, L.; Ngai, T. Poly (l-lactic acid)(PLLA)/MgSO4·7H2O Composite Coating on Magnesium Substrates for Corrosion Protection and Cytocompatibility Promotion. ACS Appl. Bio Mater. 2020, 3, 1364–1373. [Google Scholar] [CrossRef]
- Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Biomedical coatings on magnesium alloys—A review. Acta Biomater. 2012, 8, 2442–2455. [Google Scholar] [CrossRef] [PubMed]
- Bakhsheshi-Rad, H.R.; Hadisi, Z.; Hamzah, E.; Ismail, A.F.; Aziz, M.; Kashefian, M. Drug delivery and cytocompatibility of ciprofloxacin loaded gelatin nanofibers-coated Mg alloy. Mat. Lett. 2017, 207, 179–182. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Staiger, M.P.; Dias, G.J.; Hadisi, Z.; Saheban, M.; Kashefian, M. Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg–Ca–TiO2 composite scaffold. Mater. Des. 2018, 139, 212–221. [Google Scholar] [CrossRef]
- Kania, A.; Szindler, M.M.; Szindler, M. Structure and corrosion behavior of TiO2 thin films deposited by ALD on a biomedical magnesium alloy. Coatings 2021, 11, 70. [Google Scholar] [CrossRef]
- Novotny, J.; Michna, S.; Hren, I.; Cais, J.; Lysonkova, I.; Svorcik, V. PTFE based multilayer micro-coatings for aluminum AlMg3 forms used in tire production. Coatings 2021, 11, 119. [Google Scholar] [CrossRef]
- Ashkenazi, D.; Inberg, A.; Shacham-Diamand, Y.; Stern, A. Gold, silver, and electrum electroless plating on additively manufactured laser powder-bed fusion AlSi10Mg parts: A review. Coatings 2021, 11, 422. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, W.; Wu, L.; Chen, J.; Pan, F. Effect of microstructure on layered double hydroxides film growth on Mg-2Zn-xMn alloy. Coatings 2021, 11, 59. [Google Scholar] [CrossRef]
- Kozelskaya, A.; Dubinenko, G.; Vorobyev, A.; Fedotkin, A.; Korotchenko, N.; Gigilev, A.; Shesterikov, E.; Zhukov, Y.; Tverdokhlebov, S. Porous CaP coatings formed by combination of plasma electrolytic oxidation and RF-magnetron sputtering. Coatings 2020, 10, 1113. [Google Scholar] [CrossRef]
- Hou, S.; Yu, W.; Yang, Z.; Li, Y.; Yang, L.; Lang, S. Properties of titanium oxide coating on MgZn alloy by magnetron sputtering for stent application. Coatings 2020, 10, 999. [Google Scholar] [CrossRef]
- Li, S.; Yi, L.; Zhu, X.; Liu, T. Ultrasonic treatment induced fluoride conversion coating without pores for high corrosion resistance of Mg alloy. Coatings 2020, 10, 996. [Google Scholar] [CrossRef]
- Simchen, F.; Sieber, M.; Mehner, T.; Lampke, T. Characterisation Method of the passivation mechanisms during the pre-discharge stage of plasma electrolytic oxidation indicating the mode of action of fluorides in PEO of magnesium. Coatings 2020, 10, 965. [Google Scholar] [CrossRef]
- Toulabifard, A.; Rahmati, M.; Raeissi, K.; Hakimizad, A.; Santamaria, M. The effect of electrolytic solution composition on the structure, corrosion, and wear resistance of PEO coatings on AZ31 magnesium alloy. Coatings 2020, 10, 937. [Google Scholar] [CrossRef]
- Yu, B.; Dai, J.; Ruan, Q.; Liu, Z.; Chu, P.K. Corrosion behavior and mechanism of carbon ion-implanted magnesium alloy. Coatings 2020, 10, 734. [Google Scholar] [CrossRef]
- Dai, J.; Liu, Z.; Yu, B.; Ruan, Q.; Chu, P.K. Effects of Ti, Ni, and dual Ti/Ni Plasma immersion ion implantation on the corrosion and wear properties of magnesium alloy. Coatings 2020, 10, 313. [Google Scholar] [CrossRef] [Green Version]
- Ur Rehman, Z.; Heun Koo, B.; Choi, D. Influence of complex SiF62−ions on the PEO coatings formed on Mg–Al6–Zn1 alloy for enhanced wear and corrosion protection. Coatings 2020, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.G.; Cabeza, L.F. Anodic protection assessment using alumina-forming alloys in chloride molten salt for CSP plants. Coatings 2020, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Zeng, D.; Liu, Z.; Bai, S.; Wang, J. Influence of sealing treatment on the corrosion resistance of PEO coated Al–Zn–Mg-–Cu alloy in various environments. Coatings 2019, 9, 867. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Yang, Y.; Zhang, L.; Wu, Y.; Liang, J.; Cao, B. Preparation and characterization of fluoride-incorporated plasma electrolytic oxidation coatings on the AZ31 magnesium alloy. Coatings 2019, 9, 826. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Cheng, F.; Fang, D. Influence of TiO2 additives on cavitation erosion resistance of Al–Mg alloy micro-arc oxidation coating. Coatings 2019, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cao, H.; Huang, H.; Wang, Z. Hydrophobic modification of magnesium hydroxide coating deposited cathodically on magnesium alloy and its corrosion protection. Coatings 2019, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Moreno, L.; Mohedano, M.; Mingo, B.; Arrabal, R.; Matykina, E. Degradation behaviour of Mg0.6Ca and Mg0.6Ca2Ag alloys with bioactive plasma electrolytic oxidation coatings. Coatings 2019, 9, 383. [Google Scholar] [CrossRef] [Green Version]
Substrate | Coating | Effects | Ref. |
---|---|---|---|
AZ91 | PLA | Increases in the thickness of the PLA coating were found to improve degradation resistance but resulted in poor adhesion | [32] |
AZ31 | PLA/CNs | The PLA–CNs nanocomposite coating improved substrate corrosion resistance and increased hardness and mechanical properties | [56] |
Mg–3Zn–1Ca | PLLA/GO− AgNP | The fibrous coating of PLLA/1GO-AgNPs demonstrates adequate corrosion resistance, cytocompatibility, and antibacterial activity | [57] |
Mg–1Ca | PLLA−AKT− DOXY | PLLA-AKT nanofiber coatings including low concentrations of DOXY can be used to slow the degradation process and improve antibacterial efficiency | [58] |
ZK60 | PLGA−Gallic Acid−PLGA | The sandwich coating increased corrosion resistance while also promoting endothelialization | [59] |
Mg–Sr | PLGA/Ti3C2 | In comparison to the corrosion current density (icorr) of the Mg–Sr alloy (7.13 × 10−5 A/cm2), the adjusted samples (Mg/PLGA/Ti3C2) had a corrosion current density of 7.65 × 10−9 A/cm2 that was approximately four orders of magnitude lower. The icorr of the modified samples increased to 3.48 × 10−7 A/cm2 following near infrared 808 nm laser irradiation. The mechanism is that local hyperthermia increased the free volume of PLGA, and the resulting increase in intermolecular gap improved electrolyte penetration | [60] |
Mg | PLA−PCL | At 37 °C, both polymer films enhanced the corrosion resistance of high purity magnesium in m-SBF | [61] |
Mg | PCL | Increased the coating thickness from 0 to 13.31 ± 0.36 μm, the volume of hydrogen gas and the amount of magnesium ions, all of which are measures of magnesium corrosion, decreased by nearly half, from 0.57 mL/cm2/day and 0.55 mg/day to 0.20 mL/cm2/day and 0.26 mg/day, respectively | [62] |
Mg | ZnHA−Zeolite/ PCL | In vitro corrosion testing revealed that the composite coatings had better corrosion resistance as compared to the bare Mg. The presence of zinc in the coating allowed zinc-doped hydroxyapatite–zeolite (ZnHA−Zeo) surfaces to reduce the viability of adhered bacteria colonies when compared to HA−Zeo | [63] |
Mg | PCL/HA | The corrosion resistance of the PCL/HA film was significantly higher (8720 Ω·cm2) than that of the uncoated sample (1562 Ω·cm2). However, as compared to PCL and PCL/HA composite film with low HA content, the PCL coating with high HA has lower corrosion resistance because the agglomerate particles in the coating with a high HA amount did not form a uniform and continuous film that can protect the substrate from degradation | [64] |
Mg–6%Zn– 10%Ca3(PO4)2 | PCL | As compared to the uncoated specimen, the PCL-coated magnesium matrix composite experiences the least rise in pH, release of hydrogen, and weight loss during in vitro degradation | [48] |
AZ31 | PEO/PCL | Improved corrosion resistance; additionally, the PEO/PCL composite coating was more suitable for cell adhesion and proliferation than the AZ31 alloy and PEO coating. | [65] |
ZK60 | MgF2/PCL | In vitro corrosion resistance, cell viability, cell adhesion, and cell proliferation improved | [66] |
Mg–1.2Ca–2Zn | PCL/OCP/HA | Improvement of corrosion resistance; after composite coating, the corrosion current densities of Mg alloy decreased significantly from 211.6 to 0.059 μA/cm2 | [67] |
Substrate | Coating | Effects | Ref. |
---|---|---|---|
Mg–Zn–Ca | Chitosan/MAO | At the same time, the corrosion current density was decreased by nearly 3 orders compared with that of bare alloy | [94] |
AZ91 | Chitosan–bioactive glass (BG) | BG concentration of 0.4 g/L in CS-BG coatings showed the best corrosion resistance and bioactivity | [95] |
AZ91 | Baghdadite/ PCL/chitosan | Improved the corrosion resistance with 3 wt % baghdadite and increased the roughness | [96] |
Mg–6%Zn–10%Ca3(PO4)2 | Chitosan | Improved the corrosion resistance and reduced hydrogen release from Mg-based substrate | [97] |
Mg | Chitosan/heparinized graphene oxide | Improvement in the corrosion resistance and biocompatibility of the Mg substrate | [98] |
AZ31 and ZE41 | TiO2/collagen | Improvement in the cell response and viability and ability to control degradation rate of Mg alloys in the long term | [99] |
AZ60 | PDA/DCPD/Collagen | Enhanced cytocompatibility, osteogenic differentiation ability, and corrosion resistance of AZ60 substrate | [84] |
AZ91D | Gelatin–chitosan | Coated alloy presented better corrosion resistance so as to promote a self-healing performance | [100] |
Mg–3Zn–0.5Sr | Chitosan (TiO2)-heparin/MAO | Layer by layer assembled films effectively sealed the pores in MAO layer, thus increases the corrosion resistance of Mg alloy substrate | [101] |
Mg–Zn–Ca | Silk fibroin | Formation of silk fibroin film improved the corrosion resistance of the Mg–Zn–Ca underlayer | [102] |
Mg–Zn–Y–Nd–Zr | Hydroxyapatite/ silk fibroin | Improvement of anticorrosion ability and good efficacy in guidance of cell attachment and alignment by preparation of hydroxyapatite/silk fibroin on Mg alloy | [103] |
Mg–1Ca | Sr/P-doped silk fibroin silk | Improvement of corrosion resistance, biocompatibility, and osteogenic potential | [93] |
Mg–1Ca | Silk fibroin and K3PO4 | Enhance in corrosion resistance, osteogenic activity, and self-healing ability | [104] |
Substrate | Coating | Electrolyte | Immersion Time (min) | Ecorr (V/SCE) | icorr (µA/cm2) | Ref. |
---|---|---|---|---|---|---|
AZ31 | Uncoated | Hank’s solution | 60 | −1.607 | 34.8 | [35] |
AZ31 | HA | Hank’s solution | 60 | −1.453 | 17.6 | [35] |
AZ31 | HA/PCL | Hank’s solution | 60 | −1.399 | 5.98 | [35] |
AZ31 | HA/TiO2/PLA | Hank’s solution | 60 | −0.430 | 8.91 × 10−4 | [35] |
AZ31 | Uncoated | SBF | 120 | −1.67 | 611.71 | [36] |
AZ31 | MAO | SBF | 120 | −1.57 | 66.32 | [36] |
AZ31 | PLA | SBF | 120 | −1.57 | 7.72 | [36] |
AZ31 | MAO-PLA | SBF | 120 | −1.50 | 1.83 | [36] |
Mg6Zn | Uncoated | 0.9% NaCl | - | −1.46 | 26.5 | [42] |
Mg6Zn | %2 PLGA | 0.9% NaCl | - | −1.44 | 0.085 | [42] |
Mg6Zn | %4 PLGA | 0.9% NaCl | - | −1.36 | 0.097 | [42] |
Mg–4Zn–0.6Zr–0.4Sr | Uncoated | SBF | 30 | −1.66 | 1.95 × 102 | [43] |
Mg–4Zn–0.6Zr–0.4Sr | MAO | SBF | 30 | −1.57 | 1.87 | [43] |
Mg–4Zn–0.6Zr–0.4Sr | MAO+PLGA | SBF | 30 | −1.54 | 1.39 × 10−1 | [43] |
Mg–4.98Al–0.29Mn | Uncoated | SBF | 20 | −1.340 | 103 | [55] |
Mg–4.98Al–0.29Mn | 5% PCL | SBF | 20 | −1.140 | 7.723 | [55] |
Mg–4.98Al–0.29Mn | 10% PCL | SBF | 20 | −0.709 | 1.721 | [55] |
Mg–4.98Al–0.29Mn | PCL/nHA | SBF | 20 | −1.210 | 3.6 | [55] |
Mg–3Zn–1Ca–1GNP | Uncoated | SBF | 30 | −1.45 | 111.7 | [19] |
Mg–3Zn–1Ca–1GNP | PCL | SBF | 30 | −1.46 | 62.9 | [19] |
Mg–3Zn–1Ca–1GNP | PCL/2.5Br | SBF | 30 | −1.30 | 31.11 | [19] |
Mg–3Zn–1Ca–1GNP | PCL/5Br | SBF | 30 | −1.36 | 2.55 | [19] |
Mg–3Zn–1Ca–1GNP | PCL/10Br | SBF | 30 | −1.15 | 0.45 | [19] |
AZ31 | HA | SBF | - | −1.569 | 4.765 | [68] |
AZ31 | HA-5% Chitosan | SBF | - | −1.601 | 15.15 | [68] |
AZ31 | HA-10% Chitosan | SBF | - | −1.581 | 31.44 | [68] |
AZ31 | HA-20% Chitosan | SBF | - | −1.586 | 50.97 | [68] |
AZ31 | Uncoated | SBF | 60 | −1.68 | 2.98 × 102 | [86] |
AZ31 | Anodized coat | SBF | 60 | −1.59 | 1.071 × 102 | [86] |
AZ31 | Gelatin/Si−Mg−FA | SBF | 60 | −1.47 | 50.22 | [86] |
AZ31 | PPy | SBF | - | −1.480 | 8.251 | [85] |
AZ31 | PPy-Anodization (20 min) | SBF | - | −1.412 | 0.254 | [85] |
AZ31 | PPy-Anodization (40 min) | SBF | - | −1.394 | 0.124 | [85] |
AZ31 | PPy-Anodization (60 min) | SBF | - | −1.403 | 0.189 | [85] |
AZ31 | PPy-Gel0.5 | SBF | - | −1.325 | 0.092 | [85] |
AZ31 | PPy-Gel1 | SBF | - | −1.309 | 0.014 | [85] |
AZ31 | PPy-Gel2 | SBF | - | −1.315 | 0.054 | [85] |
Mg–1.5Zn–0.5Ca | Uncoated | SBF | - | −1.56 | 1.37 × 10−2 | [89] |
Mg–1.5Zn–0.5Ca | APTES | SBF | - | −0.80 | 3.65 × 10−2 | [89] |
MA8 | Uncoated | 3% NaCl | - | −1.56 | 53 | [105] |
MA8 | PEO | 3% NaCl | - | −1.50 | 7.8 × 10−2 | [105] |
MA8 | PEO+SPTFE (single) | 3% NaCl | - | −1.46 | 3.3 × 10−2 | [105] |
MA8 | PEO+SPTFE (five-fold) | 3% NaCl | - | −1.27 | 3.1 × 10−3 | [105] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saberi, A.; Bakhsheshi-Rad, H.R.; Abazari, S.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings 2021, 11, 747. https://doi.org/10.3390/coatings11070747
Saberi A, Bakhsheshi-Rad HR, Abazari S, Ismail AF, Sharif S, Ramakrishna S, Daroonparvar M, Berto F. A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings. 2021; 11(7):747. https://doi.org/10.3390/coatings11070747
Chicago/Turabian StyleSaberi, Abbas, Hamid Reza Bakhsheshi-Rad, Somayeh Abazari, Ahmad Fauzi Ismail, Safian Sharif, Seeram Ramakrishna, Mohammadreza Daroonparvar, and Filippo Berto. 2021. "A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges" Coatings 11, no. 7: 747. https://doi.org/10.3390/coatings11070747
APA StyleSaberi, A., Bakhsheshi-Rad, H. R., Abazari, S., Ismail, A. F., Sharif, S., Ramakrishna, S., Daroonparvar, M., & Berto, F. (2021). A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings, 11(7), 747. https://doi.org/10.3390/coatings11070747