Effect of Assembly Unit of Expansive Agents on the Mechanical Performance and Durability of Cement-Based Materials
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Samples Preparation and Measurement
3. Results and Discussion
3.1. Compressive Strength
3.2. The Expansion Rate
3.3. The Research of Durability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mo, Z.; Gao, X.; Su, A. Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions. Constr. Build. Mater. 2021, 268, 121112. [Google Scholar] [CrossRef]
- Ren, G.; Yao, B.; Huang, H.; Gao, X. Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Constr. Build. Mater. 2021, 286, 122958. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; Su, Y.; He, X.; Tan, H.; Yang, W.; Strnadel, B. Eco-friendly treatment of ow-calcium coal fly ash for high pozzolanic reactivity: A step towards waste utilization in sustainable building material. J. Clean. Prod. 2019, 238, 117962. [Google Scholar] [CrossRef]
- Ruan, S.; Cise, U. Influence of supplementary cementitious materials on the performance and environmental impacts of reactive magnesia cement concrete. J. Clean. Prod. 2017, 159, 62–73. [Google Scholar] [CrossRef]
- Guo, S.; Bu, Y.; Lu, Y. Addition of tartaric acid to prevent delayed setting of oilwell cement containing retarder at high temperatures. J. Petrol. Sci. Eng. 2019, 172, 269–279. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, A.; Zhang, L.; Liu, J.; Han, Y.; Shu, H.; Wang, J. Study on the influence of compound rust inhibitor on corrosion of steel bars in chloride concrete by electrical parameters. Constr. Build. Mater. 2020, 262, 120763. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, A.; Zhang, L.; Liu, J.; Han, Y.; Shu, H.; Wang, J. Research on the influence of carbonation on the content and state of chloride ions and the following corrosion resistance of steel bars in cement paste. Coatings 2020, 10, 1071. [Google Scholar] [CrossRef]
- Ormellese, M.; Berra, M.; Bolzoni, F.; Pastore, T. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cem. Concr. Res. 2006, 36, 536–547. [Google Scholar] [CrossRef]
- Leon, C.; Val, D. Prediction of corrosion-induced cover cracking in reinforced concrete structures. Constr. Build. Mater. 2011, 25, 1854–1869. [Google Scholar]
- Mikulčić, H.; Cabezas, H.; Vujanović, M.; Duić, N. Environmental assessment of different cement manufacturing processes based on energy and ecological footprint analysis. J. Clean. Prod. 2016, 130, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Gawwad, H.; Heikal, M.; Mohammed, M.; Abd El-Aleem, S.; Hassan, S.; Vasquez-Garcia, S.R.; Alomayri, T. Sustainable disposal of cement kiln dust in the production of cementitious materials. J. Clean. Prod. 2019, 232, 1218–1229. [Google Scholar] [CrossRef]
- Jung, I.; Decterov, S.; Pelton, A. Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO2 system. J. Euro. Ceram. Soc. 2005, 25, 313–333. [Google Scholar] [CrossRef]
- Soliman, A.; Nehdi, M. Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete. Cem. Concr. Compos. 2014, 46, 81–89. [Google Scholar] [CrossRef]
- Park, S.; Ryu, G.; Koh, K.; Kim, D. Effect of shrinkage reducing agent on pullout resistance of high-strength steel fibers embedded in ultra-high-performance concrete. Cem. Concr. Compos. 2014, 49, 59–69. [Google Scholar] [CrossRef]
- Ghafari, E.; Ghahari, S.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Constr. Build. Mater. 2016, 127, 43–48. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, S.; Yang, B. Experimental study on the stability of RCC mixed with MgO. IOP Natl. Conf. Concr. Expans. Agents 2010, 39, 56–58. [Google Scholar]
- Sherir, M.; Hossain, K.; Lachemi, M. Self-healing and expansion characteristics of cementitious composites with high volume fly ash and MgO-type expansive agent. Constr. Build. Mater. 2016, 127, 80–92. [Google Scholar] [CrossRef]
- Temiz, H.; Kantarci, F.; Inceer, M. Influence of blast-furnace slag on behaviour of dolomite used as a raw material of MgO-type expansive agent. Constr. Build. Mater. 2015, 94, 528–535. [Google Scholar] [CrossRef]
- Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. MgO expansive cement and concrete in China: Past, present and future. Cem. Concr. Res. 2014, 57, 1–12. [Google Scholar] [CrossRef]
- Choi, S.; Jang, B.; Kim, J.; Lee, K. Durability characteristics of fly ash concrete containing lightly-burnt MgO. Constr. Build. Mater. 2014, 58, 77–84. [Google Scholar] [CrossRef]
- El Haleem, S.A.; El Wanees, S.A.; El Aal, E.A.; Diab, A. Environmental factors affecting the corrosion behavior of reinforcing steel. IV. Variation in the pitting corrosion current in relation to the concentration of the aggressive and the inhibitive anions. Corros. Sci. 2010, 52, 1675–1683. [Google Scholar] [CrossRef]
- Yoo, D.; Kang, S.; Lee, J.; Yoon, Y. Effect of shrinkage reducing admixture on tensile and flexural behaviors of UHPFRC considering fiber distribution characteristics. Cem. Concr. Res. 2013, 54, 180–190. [Google Scholar] [CrossRef]
- Hargis, C.; Telesca, A.; Monteiro, P. Calcium sulfoaluminate (Ye’elimite) hydration in the presence of gypsum, calcite, and vaterite. Cem. Concr. Res. 2014, 65, 15–20. [Google Scholar] [CrossRef]
- Glasser, F.; Zhang, L. High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem. Concr. Res. 2001, 31, 1881–1886. [Google Scholar] [CrossRef]
- van Zijl, G.; Slowik, V.; Toledo Filho, R.D.; Wittmann, F.; Mihashi, H. Comparative testing of crack formation in strain-hardening cement-based composites (SHCC). Mater. Struct. 2016, 49, 1175–1189. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Gao, X.; Su, A.; Li, Q. Effect of carbonation curing on sulfate resistance of cement-coal gangue paste. J. Clean. Prod. 2020, 278, 123897. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Liu, Y.; Muhammad, Y.; Su, Z.; Yang, J. Studies on the properties of modified heavy calcium carbonate and SBS composite modified asphalt. Constr. Build. Mater. 2019, 218, 413–423. [Google Scholar] [CrossRef]
- James, A.; Bazarchi, E.; Chiniforush, A.; Aghdam, P.P.; Hosseini, M.R.; Akbarnezhad, A.; Martek, I.; Ghodoosi, F. Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A review. Constr. Build. Mater. 2019, 224, 1026–1039. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Q.; Xu, S.; Wang, N.; Zheng, X. Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties. Constr. Build. Mater. 2020, 251, 118946. [Google Scholar] [CrossRef]
- Aïtcin, P. Demystifying autogenous shrinkage. Concr. Int. 1999, 21, 54–56. [Google Scholar]
- Xu, L.; Deng, M. Dolomite used as raw material to produce MgO-based expansive agent. Cem. Concr. Res. 2005, 35, 1480–1485. [Google Scholar]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 |
---|---|---|---|---|---|---|
3.61 | 3.79 | 1.43 | 82.79 | 0.13 | 7.58 | 0.27 |
Samples | Cement | FA | GGBS | Expansive Agents | Water | Sand | Stone | Water-Reducing Agent |
---|---|---|---|---|---|---|---|---|
W/B-0.43-A-0% | 185 | 111 | 74.0 | 0 | 159.1 | 837 | 1023 | 3.7 |
W/B-0.43-A-3% | 179.5 | 107.7 | 71.8 | 11.1 | 159.1 | 837 | 1023 | 3.7 |
W/B-0.43-A-6% | 173.9 | 104.3 | 69.6 | 22.2 | 159.1 | 837 | 1023 | 3.7 |
W/B-0.43-A-9% | 168.3 | 101 | 67.3 | 33.3 | 159.1 | 837 | 1023 | 3.7 |
W/B-0.43-A-12% | 162.8 | 97.7 | 65.1 | 44.4 | 159.1 | 837 | 1023 | 3.7 |
W/B-0.43-B-0% | 148 | 148 | 98.7 | 0 | 159.1 | 823 | 1006 | 3.7 |
W/B-0.43-B-3% | 143.6 | 143.6 | 95.7 | 11.1 | 159.1 | 823 | 1006 | 3.7 |
W/B-0.43-B-6% | 139.1 | 139.1 | 92.7 | 22.2 | 159.1 | 823 | 1006 | 3.7 |
W/B-0.43-B-9% | 134.7 | 134.7 | 89.8 | 33.3 | 159.1 | 823 | 1006 | 3.7 |
W/B-0.43-B-12% | 130.1 | 130.1 | 86.7 | 44.4 | 159.1 | 823 | 1006 | 3.7 |
W/B-0.33-A-0% | 243.3 | 146.0 | 97.3 | 0 | 162 | 698 | 1047 | 4.4 |
W/B-0.33-A-3% | 237.7 | 142.6 | 95.1 | 14.7 | 162 | 698 | 1047 | 4.4 |
W/B-0.33-A-6% | 230.3 | 138.2 | 92.1 | 29.4 | 162 | 698 | 1047 | 4.4 |
W/B-0.33-A-9% | 223.0 | 133.8 | 89.2 | 44.1 | 162 | 698 | 1047 | 4.4 |
W/B-0.33-A-12% | 215.7 | 129.4 | 86.3 | 58.8 | 162 | 698 | 1047 | 4.4 |
W/B-0.33-B-0% | 196.0 | 196 | 130.7 | 0 | 162 | 715 | 1073 | 4.4 |
W/B-0.33-B-3% | 190.1 | 190.1 | 126.7 | 14.7 | 162 | 715 | 1073 | 4.4 |
W/B-0.33-B-6% | 184.2 | 184.2 | 122.8 | 29.4 | 162 | 715 | 1073 | 4.4 |
W/B-0.33-B-9% | 178.4 | 178.4 | 118.9 | 44.1 | 162 | 715 | 1073 | 4.4 |
W/B-0.33-B-12% | 172.5 | 172.5 | 115.0 | 58.8 | 162 | 715 | 1073 | 4.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Shu, C.; Jiao, T.; Han, Y.; Wang, H. Effect of Assembly Unit of Expansive Agents on the Mechanical Performance and Durability of Cement-Based Materials. Coatings 2021, 11, 731. https://doi.org/10.3390/coatings11060731
Wang L, Shu C, Jiao T, Han Y, Wang H. Effect of Assembly Unit of Expansive Agents on the Mechanical Performance and Durability of Cement-Based Materials. Coatings. 2021; 11(6):731. https://doi.org/10.3390/coatings11060731
Chicago/Turabian StyleWang, Lin, Chunxue Shu, Tiantian Jiao, Yong Han, and Hui Wang. 2021. "Effect of Assembly Unit of Expansive Agents on the Mechanical Performance and Durability of Cement-Based Materials" Coatings 11, no. 6: 731. https://doi.org/10.3390/coatings11060731