Enhancing Graphene Retention and Electrical Conductivity of Plasma-Sprayed Alumina/Graphene Nanoplatelets Coating by Powder Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Preparation
2.2. Coating Preparation
2.3. Coating Characterization
2.4. Thermogravimetric Analysis
2.5. Electrical Conductivity Test
3. Results and Discussion
3.1. Characterization of Powders
3.2. Effect of Powder Heat Treatment on the Microstructure of the Plasma-Sprayed Al2O3/GNPs Composite Coatings
3.3. Effect of Powder Heat Treatment on the Retention and Thermal Degradation of GNPs within Al2O3/GNPs Coatings
3.4. Effect of Powder Heat Treatment on the Electrical Conductivity of Al2O3/GNPs Coatings
4. Conclusions
- (1)
- With the increase in the heat treatment temperature for the AG feedstock powders, the corresponding plasma-sprayed Al2O3/GNPs composite coatings presented decreased porosity and improved adhesive strength. Moreover, GNPs were found to be well-dispersed at inter-lamellar interfaces within the plasma-sprayed AG, AG850, and AG1280 coatings;
- (2)
- As the powder heat treatment temperature increased, enhanced GNPs retention from 12.9% to 28.4%, and further to 37.4%, as well as decreased structural defects of GNPs, were achieved for the AG, AG850, and AG1280 coatings, respectively. This is mainly related to less thermal energy being available for GNPs to combust, resulting from the high melting degree of alumina particles during the in-flight process;
- (3)
- The electrical conductivities of the plasma-sprayed AG, AG850, and AG1280 coatings exhibited a remarkable increase of ~3 orders, 4 orders, and 7 orders of magnitude higher than that of the Al2O3 coating. The enhanced electrical conductivity of Al2O3/GNPs composite coatings with the increase in powder heat-treatment temperature is attributed to the improved interface bonding within the coating, as well as the contribution of retained GNPs, e.g., electrical conductive bridging between lamellae and electrical conductive networks formed by GNPs throughout the coatings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, S.Q.; Zhou, J.Z.; Sun, K.T.; Yang, H.L.; Cai, W.C.; Liu, Y.; Zhou, P.; Wu, S.J.; Li, H. Microstructural charactistics of plasma sprayed NiCrBSi coatings and their wear and corrosion behaviors. Coatings 2021, 11, 170. [Google Scholar] [CrossRef]
- Choudhary, S.; Islam, A.; Mukherjee, B.; Richter, J.; Arold, T.; Niendorf, T.; Keshri, A.K. Plasma sprayed lanthanum zirconate coating over additively manufactured carbon nanotube reinforced Ni-based composite: Unique performance of thermal barrier coating system without bondcoat. Appl. Surf. Sci. 2021, 550, 149397. [Google Scholar] [CrossRef]
- Michalak, M.; Latka, L.; Sokolowski, P.; Toma, F.L.; Myalska, H.; Denoirjean, A.; Ageorges, H. Microstructural, mechanical and tribological properties of finely grained Al2O3 coatings obtained by SPS and S-HVOF methods. Surf. Coat. Technol. 2020, 404, 126463. [Google Scholar] [CrossRef]
- Hao, S.; Li, C.J.; Yang, G.J. Influence of deposition temperature on the microstructures and properties of plasma-sprayed Al2O3 coatings. J. Therm. Spray Technol. 2011, 20, 160–169. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Khodair, Z.T.; Khadom, A.A. Preparation, characterization and application of Al2O3 nanoparticles for the protection of boiler steel tubes from high temperature corrosion. Ceram. Int. 2020, 46, 26945–26955. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.F.; Fan, Z.J.; Yan, J.; Wei, T. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 2011, 46, 315–318. [Google Scholar] [CrossRef]
- Centeno, A.; Rocha, V.G.; Alonso, B.; Fernández, A.; Gutierrez-Gonzalez, C.F.; Torrecillas, R.; Zurutuza, A. Graphene for tough and electroconductive alumina ceramics. J. Eur. Ceram. Soc. 2013, 33, 3201–3210. [Google Scholar] [CrossRef]
- Momohjimoh, I.; Saheb, N.; Hussein, M.A.; Laoui, T.; Al-Aqeeli, N. Electrical conductivity of spark plasma sintered Al2O3–SiC and Al2O3-carbon nanotube nanocomposites. Ceram. Int. 2020, 46, 16008–16019. [Google Scholar] [CrossRef]
- Mohanty, D.; Kar, S.; Paul, S.; Bandyopadhyay, P.P. Carbon nanotube reinforced HVOF sprayed WC-Co coating. Mater. Des. 2018, 156, 340–350. [Google Scholar] [CrossRef]
- Balani, K.; Zhang, T.; Karakoti, A.; Li, W.Z.; Seal, S.; Agarwal, A. In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating. Acta Mater. 2008, 56, 571–579. [Google Scholar] [CrossRef]
- Gómez-Gómez, A.; Nistal, A.; García, E.; Osendi, M.I.; Belmonte, M.; Miranzo, P. The decisive role played by graphene nanoplatelets on improving the tribological performance of Y2O3-Al2O3-SiO2 glass coatings. Mater. Des. 2016, 112, 449–455. [Google Scholar] [CrossRef]
- Abakah, R.R.; Huang, F.; Hu, Q.; Wang, Y.; Jing, L. Comparative study of corrosion properties of different graphene nanoplate/epoxy composite coatings for enhanced surface barrier protection. Coatings 2021, 11, 285. [Google Scholar] [CrossRef]
- Zhang, X.J.; Shen, Z.G.; Zhang, W.; Yi, M.; Ma, H.; Liu, L.; Liu, L.X.; Zhao, Y.Z. Graphene coating for enhancing the atom oxygen erosion resistance of kapton. Coatings 2020, 10, 644. [Google Scholar] [CrossRef]
- Li, X.S.; Cai, W.W.; An, J.; Kim, S.; Nah, J.; Yang, D.X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.Q.; Xie, Y.T.; Li, K.; Huang, L.P.; Huang, S.S.; Zhao, B.Z.; Zheng, X.B. Microstructure and wear behavior of graphene nanosheets-reinforced zirconia coating. Ceram. Int. 2014, 40, 12821–12829. [Google Scholar] [CrossRef]
- Coscia, U.; Longo, A.; Palomba, M.; Sorrentino, A.; Barucca, G.; Bartolomeo, A.D.; Urban, F.; Ambrosone, G.; Carotenuto, G. Influence of the thermomechanical characteristics of low-density polyethylene substrates on the thermoresistive properties of graphite nanoplatelet coatings. Coatings 2021, 11, 332. [Google Scholar] [CrossRef]
- Walker, L.S.; Marotto, V.R.; Rafiee, M.A.; Koratkar, N.; Corral, E.L. Toughening in graphene ceramic composites. ACS Nano 2011, 5, 3182–3190. [Google Scholar] [CrossRef]
- Ahmad, I.; Islam, M.; Subhani, T.; Zhu, Y.Q. Characterization of GNP-containing Al2O3 nanocomposites fabricated via high frequency-induction heat sintering route. J. Mater. Eng. Perform. 2015, 24, 4236–4243. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.X.; Jiang, K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 2013, 39, 6215–6221. [Google Scholar] [CrossRef]
- Islam, A.; Mukherjee, B.; Sribalaji, M.; Rahman, O.S.A.; Arunkumar, P.; Babu, K.S.; Keshri, A.K. Role of hybrid reinforcement of carbon nanotubes and graphene nanoplatelets on the electrical conductivity of plasma sprayed alumina coating. Ceram. Int. 2018, 44, 4508–4511. [Google Scholar] [CrossRef]
- Murray, J.W.; Rance, G.A.; Xu, F.; Hussain, T. Alumina-graphene nanocomposite coatings fabricated by suspension high velocity oxy-fuel thermal spraying for ultra-low-wear. J. Eur. Ceram. Soc. 2018, 38, 1819–1828. [Google Scholar] [CrossRef]
- Garcia, E.; Nistal, A.; Osendi, M.I.; Miranzo, P. Superior performance of ablative glass coatings containing graphene nanosheets. J. Am. Ceram. Soc. 2016, 99, 4066–4072. [Google Scholar] [CrossRef]
- Garcia, E.; Nistal, A.; Khalifa, A.; Essa, Y.; Escalera, F.M.; Osendi, M.I.; Miranzo, P. Highly electrically conducting glass-graphene nanoplatelets hybrid coatings. ACS Appl. Mater. Inter. 2015, 7, 17656–17662. [Google Scholar] [CrossRef] [PubMed]
- ASTM, C633-13. Standard Test. Method for Adhesion or Cohesion Strength of Thermal Spray Coatings 2013; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Herle, J.V.; Mcevoy, A.J.; Thampi, K.R. Conductivity measurements of various yttria-stabilized zirconia samples. J. Mater. Sci. 1994, 29, 3691–3701. [Google Scholar] [CrossRef]
- An, Y.L.; Li, S.J.; Hou, G.L.; Zhao, X.Q.; Zhou, H.D.; Chen, J.M. Mechanical and tribological properties of nano/micro composite alumina coatings fabricated by atmospheric plasma spraying. Ceram. Int. 2017, 43, 5319–5328. [Google Scholar] [CrossRef]
- Yilmaz, S. An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3–13wt.% TiO2 with bond coat on pure titanium substrate. Ceram. Int. 2009, 35, 2017–2022. [Google Scholar] [CrossRef]
- Mukherjee, B.; Rahman, O.S.A.; Islam, A.; Sribalaji, M.; Keshri, A.K. Plasma sprayed carbon nanotube and graphene nanoplatelets reinforced alumina hybrid composite coating with outstanding toughness. J. Alloy Compd. 2017, 727, 658–670. [Google Scholar] [CrossRef]
- Song, R.G.; Wang, C.; Jiang, Y.; Li, H.; Lu, G.; Wang, Z.X. Microstructure and properties of Al2O3/TiO2 nanostructured ceramic composite coatings prepared by plasma spraying. J. Alloy Compd. 2012, 544, 13–18. [Google Scholar] [CrossRef]
- Li, C.J.; Ohmori, A. Relationships between the microstructure and properties of thermally sprayed deposits. J. Therm. Spray Technol. 2002, 11, 365–374. [Google Scholar] [CrossRef]
- McPherson, R. The relationship between the mechanism of formation, microstructure and properties of plasma-sprayed coatings. Thin Solid Films 1981, 83, 297–310. [Google Scholar] [CrossRef]
- Venturi, F.; Rance, G.A.; Thomas, J.; Hussain, T. A low-friction graphene nanoplatelets film from suspension high velocity oxy-fuel thermal spray. AIP Adv. 2019, 9, 025216. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Ding, S.Y.; Zheng, W.G.; Li, W.Y.; Li, H. Microstructure and anti-wear and corrosion performances of novel UHMWPE/graphene-nanosheet composite coatings deposited by flame spraying. Polym. Advan. Technol. 2013, 24, 888–894. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.Y.; Liao, H.L.; Li, C.J.; Li, C.X.; Coddet, C. Microstructure and electrical conductivity of atmospheric plasma-sprayed LSM/YSZ composite cathode materials. J. Therm. Spray Technol. 2007, 16, 1005–1010. [Google Scholar] [CrossRef]
- Li, C.J.; Li, C.X.; Wang, M. Effect of spray parameters on the electrical conductivity of plasma-sprayed La1−xSrxMnO3 coating for the cathode of SOFCs. Surf. Coat. Technol. 2005, 198, 278–282. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, H.L.; Li, W.Y.; Zhang, G.; Coddet, C.; Li, C.J.; Li, C.X.; Ning, X.J. Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying. J. Therm. Spray Technol. 2006, 15, 598–603. [Google Scholar] [CrossRef]
- Lee, H.; Kim, K.; Kang, S.H.; Kwon, Y.; Kim, J.H.; Kwon, Y.K.; Ryoo, R.; Park, J.Y. Extremely high electrical conductance of microporous 3D graphene-like zeolite-templated carbon framework. Sci. Rep. 2017, 7, 11460–11468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Lee, T.; Kwon, Y.; Seo, Y.; Song, J.; Park, J.K.; Lee, H.; Park, J.Y.; Ihee, H.; Cho, S.J.; et al. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 2016, 535, 131–135. [Google Scholar] [CrossRef]
Parameters | Unit | Value |
---|---|---|
Plasma arc power | kW | 43 |
Flow rate of Ar | slpm | 50 |
Flow rate of H2 | slpm | 8 |
Spray distance | mm | 100 |
Powder feeding rate | g min−1 | 30 |
Coating Types | Al2O3 | AG | AG850 | AG1280 |
---|---|---|---|---|
Apparent porosity (%) | 2.3 | 6.8 | 3.4 | 1.6 |
Adhesive strength (MPa) | 26.2 | 14.6 | 20.4 | 31.5 |
Coating Types | AG | AG850 | AG1280 |
---|---|---|---|
Retention amount of GNPs (wt.%) | 12.9 | 28.4 | 37.2 |
Materials | Pristine GNPs | AG Coating | AG850 Coating | AG1280 Coating |
---|---|---|---|---|
ID/IG | 0.13 | 0.71 | 0.57 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Xie, S.; Xu, K.; Huang, L.; Wei, D.; Tian, J. Enhancing Graphene Retention and Electrical Conductivity of Plasma-Sprayed Alumina/Graphene Nanoplatelets Coating by Powder Heat Treatment. Coatings 2021, 11, 643. https://doi.org/10.3390/coatings11060643
Wu X, Xie S, Xu K, Huang L, Wei D, Tian J. Enhancing Graphene Retention and Electrical Conductivity of Plasma-Sprayed Alumina/Graphene Nanoplatelets Coating by Powder Heat Treatment. Coatings. 2021; 11(6):643. https://doi.org/10.3390/coatings11060643
Chicago/Turabian StyleWu, Xiaoyu, Shufeng Xie, Kangwei Xu, Lei Huang, Daling Wei, and Jiajia Tian. 2021. "Enhancing Graphene Retention and Electrical Conductivity of Plasma-Sprayed Alumina/Graphene Nanoplatelets Coating by Powder Heat Treatment" Coatings 11, no. 6: 643. https://doi.org/10.3390/coatings11060643
APA StyleWu, X., Xie, S., Xu, K., Huang, L., Wei, D., & Tian, J. (2021). Enhancing Graphene Retention and Electrical Conductivity of Plasma-Sprayed Alumina/Graphene Nanoplatelets Coating by Powder Heat Treatment. Coatings, 11(6), 643. https://doi.org/10.3390/coatings11060643