Next Article in Journal
Study on the Grafting of Chitosan-Essential Oil Microcapsules onto Cellulosic Fibers to Obtain Bio Functional Material
Next Article in Special Issue
Influence of Alternative and Conventional Surface Treatments on the Bonding Mechanism between PEEK and Veneering Resin for Dental Application
Previous Article in Journal
Highly Flexible Wind Turbine Blades Utilizing Corrugated Surface Hinges
Previous Article in Special Issue
The Importance of MDP Priming, Silica Blasting or Glazing on the Retention Force of Y-TZP Copings to Varying Geometry Tooth Abutments
 
 
Reply published on 22 June 2021, see Coatings 2021, 11(7), 741.
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Comment

Comment on Celentano et al. Suitability of a Progenitor Cell-Enriching Device for In Vitro Applications. Coatings 2021, 11, 146

1
Human Brain Wave, Corso Galileo Ferraris, 63, 10128 Turin, Italy
2
Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
*
Author to whom correspondence should be addressed.
Coatings 2021, 11(6), 636; https://doi.org/10.3390/coatings11060636
Submission received: 9 April 2021 / Revised: 27 April 2021 / Accepted: 21 May 2021 / Published: 26 May 2021
The intent of this letter is to comment on an article entitled “Suitability of a Progenitor Cell-Enriching Device for In Vitro Applications” [1] recently published in your journal, as we are afraid it could lead to disorientation and confusion among the scientific community.
Despite reading this article carefully, we have not fully understood the rationale of this paper, as the authors aimed to test a Class 2a Medical Device, whose use is only addressed to disaggregate autologous tissue sample (i.e., full thickness skin), to “evaluate the potential of the device for an in vitro cell model” by processing instead a single-cellular suspension.
It is of concern that the authors have not described carefully how the device works and, specifically, have not criticized that the obtained outcomes are achieved only due to the fact that the device has been used inadequately and could not work with a single cell suspension.
The device consists of:
  • A grid with hexagonal holes, each hole is equipped at the edges with micro-blades
  • A rotating helix.
Once activated, the rotating helix repeatedly drives the tissue sample onto the blades, which micro-fragments the tissue into smaller particles named micrografts.
We think it is adequate to discuss, point by point, the reasons why this article lacks scientific rationale:
  • As already mentioned, the authors claimed that the aim of the study was to “evaluate the potential of the device for an in vitro cell model”, even though the intended use of the device is to disaggregate mechanically tissue sample in a micrograft suspension.
  • As reported in Sections 2.3 and 2.4 the authors processed a cellular suspension, already separated by trypsinization, with the Rigeneracons device.
It is difficult to understand the authors’ experimental design/scope in doing so, as the only capacity of the device is to disaggregate tridimensional samples of tissue and, in this case, the authors wrongly used an already processed cellular suspension. The outcome is, of course, that the cells were under stress/processed twice, as well as the device, since there is nothing to process.
As the author stated, “the results obtained were not suggestive of any further space for this device in an in vitro context” and this is absolutely unacceptable as the device has been used in at least 16 publications for in vitro experiments (Table 1) with successful results.
Therefore, the author should report in the title their real setting, which is not an in vitro context (as this is too broad a description, and has already been proven to be possible with the device), but a single cell suspension.
  • The Rigeneracons device allows us to disaggregate autologous human tissues (not cells), and is used with a specific amount of saline; both conditions were not respected in the study as the authors did not follow the manufactures guidelines/IFU (instructions for use). Consequently, the authors must state clearly that the device has been used without following the IFU to generate these “data”, which cannot be discussed regarding its relevance, nor can the clinical efficacy of the subjected medical device, as it has not been correctly used.
  • The author claimed to separate progenitor cells from a population of fibroblasts, however it is mandatory to specify that the device is able to select the tissue cluster of a specific dimension containing progenitor cells due to hole size, as the device only act as a filter right after the tissue disaggregation. Again, it is difficult to understand the rationale perpetuated by the authors in using the Rigeneracons device only as a filter to collect progenitor cells; they could simply use a filter or a strainer. Even here, the scientific rationale in selecting progenitor cells from a single cell suspension using the Rigeneracons device is completely absent.
  • A wide section of the article is written around the relevance of the metal debris found after the device’s use. Again, the device has not been used following the IFU, without any tissue sample, which generates more friction between the metal parts. There is no point in discussing/researching/publishing such information, as it is confusing and impolite toward the scientific community.
The author attempted to discuss the outcome that this metal debris would have in a clinical setting; again, this is extremely impolite as this is an “in vitro” addressed paper, and should therefore report the effect of this debris in their in vitro setting, specifying that this is the result of the incorrect use of the device. In any case, the effects of this debris, for the in vitro setting, is not as detrimental as the authors would like to report; Picture 1 shows acceptable cellular viability.
Despite the authors attempt to generate data against the use of the Rigenera technology, we would point out that the debris is generated by failure to follow the IFU, and from medical-classified materials.
Lastly, the device has been approved by several regulatory agencies, along with all the necessary reports, as a biocompatibility test with more than acceptable results; this has not been reported in the paper.
Considering all the above, it is difficult to understand how such a paper was even accepted into your journal as, ultimately, the authors have only processed an enzyme-dissociated cell suspension with a medical device, the scope of use of which is completely different, and proceeded to blame this for the later malfunction, even suggesting an improvement.
It is worth mentioning, since the authors have not, that Rigeneracons has almost 15 years of preclinical data and clinical data gained from patients’ treatments, ranging from myocardial regeneration, to wound healing, to cartilage and bone regeneration, and side effects have never been reported, Please check below the complete bibliography [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61].
We ultimately suspect that the authors tried to make a more appealing paper supporting the possible selection of progenitor cells within the 2D cell in vitro by using the title “Suitability of a Progenitor Cell-Enriching Device for In Vitro Applications”; however, the entire paper has no link and scope to what is reported in the title.

Author Contributions

Conceptualization, C.A., L.T. and A.G.; Methodology, C.A., L.T. and A.G.; Validation, C.A., L.T. and A.G.; Resources, C.A., L.T. and A.G.; Writing—Original Draft Preparation, C.A., L.T. and A.G.; Writing—Review & Editing, C.A., L.T. and A.G.; Visualization, C.A., L.T. and A.G.; Supervision, C.A., L.T. and A.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing is not applicable to this article.

Conflicts of Interest

The authors are part of the R&D Division of HBW.

References

  1. Celentano, A.; Yap, T.; Pantaleo, G.; Paolini, R.; McCullough, M.; Cirillo, N. Suitability of a Progenitor Cell-Enriching Device for In Vitro Applications. Coatings 2021, 11, 146. [Google Scholar] [CrossRef]
  2. Andreone, A.; Giaquinto-Cillers, M. Reconstruction of scalp defects with exposed bone using dermis template (Integra®) with or without Autologous Skin Micrografts (Rigenera®) and Flowable wound matrix (Integra®). Wounds Int. J. 2021, 12, 5–67. [Google Scholar]
  3. Marcarelli, M.; Zappia, M.; Rissolio, L.; Baroni, C.; Astarita, C.; Trovato, L.; Graziano, A. Cartilage Micrografts as a Novel Non-Invasive and Non-Arthroscopic Autograft Procedure for Knee Chondropathy: Three-Year Follow-Up Study. J. Clin. Med. 2021, 10, 322. [Google Scholar] [CrossRef]
  4. Miotti, G.; Zingaretti, N.; Guarneri, G.F.; Manfrè, V.; Errichetti, E.; Stinco, G.; Parodi, P.C. Autologous micrografts and methotrexate in plantar erosive lichen planus: Healing and pain control. A case report. Case Rep. Plast. Surg. Hand Surg. 2020, 7, 134–138. [Google Scholar] [CrossRef]
  5. Takagi, S.; Oyama, T.; Jimi, S.; Saparov, A.; Ohjimi, H. A Novel Autologous Micrografts Technology in Combination with Negative Pressure Wound Therapy (NPWT) for Quick Granulation Tissue Formation in Chronic/Refractory Ulcer. Healthcare 2020, 8, 513. [Google Scholar] [CrossRef]
  6. Menchini, G.; Astarita, C. Effects of autologous micrografts on stable bilateral vitiligo: A focus on hand lesions. J. Dermatol. 2020, 47, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
  7. Xie, Y.; Lampinen, M.; Takala, J.; Sikorski, V.; Soliymani, R.; Tarkia, M.; Lalowski, M.; Mervaala, E.; Kupari, M.; Zheng, Z.; et al. Epicardial transplantation of atrial appendage micrograft patch salvages myocardium after infarction. J. Heart Lung Transplant. 2020, 39, 707–718. [Google Scholar] [CrossRef] [PubMed]
  8. Araújo, C.R.G.; Astarita, C.; D’Aquino, R.; Pelegrine, A.A. Evaluation of Bone Regeneration in Rat Calvaria Using Bone Autologous Micrografts and Xenografts: Histological and Histomorphometric Analysis. Materials 2020, 13, 4284. [Google Scholar] [CrossRef] [PubMed]
  9. Andreone, A.; de Hollander, D. A case report on the effect of micrografting in the healing of chronic and complex burn wounds. Int. J. Burns Trauma 2020, 10, 15–20. [Google Scholar] [PubMed]
  10. Astarita, C.; Arora, C.L.; Trovato, L. Tissue regeneration: An overview from stem cells to micrografts. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef]
  11. Jimi, S.; Takagi, S.; De Francesco, F.; Miyazaki, M.; Saparov, A. Acceleration of Skin Wound-Healing Reactions by Autologous Micrograft Tissue Suspension. Medicina 2020, 56, 321. [Google Scholar] [CrossRef]
  12. Prè, E.D.; Busato, A.; Mannucci, S.; Vurro, F.; De Francesco, F.; Riccio, V.; Solito, S.; Biswas, R.; Bernardi, P.; Riccio, M.; et al. In Vitro Characterization of Adipose Stem Cells Non-Enzymatically Extracted from the Thigh and Abdomen. Int. J. Mol. Sci. 2020, 21, 3081. [Google Scholar] [CrossRef] [PubMed]
  13. Senesi, L.; De Francesco, F.; Farinelli, L.; Manzotti, S.; Gagliardi, G.; Papalia, G.F.; Riccio, M.; Gigante, A. Mechanical and Enzymatic Procedures to Isolate the Stromal Vascular Fraction From Adipose Tissue: Preliminary Results. Front. Cell Dev. Biol. 2019, 7, 88. [Google Scholar] [CrossRef] [PubMed]
  14. Marcarelli, M.; Fiammengo, M.; Trovato, L.; Lancione, V.; Novarese, E.; Indelli, P.F.; Risitano, S. Autologous grafts in the treatment of avascular osteonecrosis of the femoral head. Acta Biomed. 2020, 91, 342–349. [Google Scholar] [PubMed]
  15. Balli, M.; Chui, J.S.-H.; Athanasouli, P.; de Oliveira, W.A.A.; El Laithy, Y.; Sampaolesi, M.; Lluis, F. Activator Protein-1 Transcriptional Activity Drives Soluble Micrograft-Mediated Cell Migration and Promotes the Matrix Remodeling Machinery. Stem Cells Int. 2019, 2019, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Riccio, M.; Marchesini, A.; Zingaretti, N.; Carella, S.; Senesi, L.; Onesti, M.G.; Parodi, P.C.; Ribuffo, D.; Vaienti, L.; De Francesco, F. A Multicentre Study: The Use of Micrografts in the Reconstruction of Full-Thickness Posttraumatic Skin Defects of the Limbs—A Whole Innovative Concept in Regenerative Surgery. Stem Cells Int. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
  17. Balli, M.; Vitali, F.; Janiszewski, A.; Caluwé, E.; Cortés-Calabuig, A.; Carpentier, S.; Duelen, R.; Ronzoni, F.; Marcelis, L.; Bosisio, F.M.; et al. Autologous micrograft accelerates endogenous wound healing response through ERK-induced cell migration. Cell Death Differ. 2020, 27, 1520–1538. [Google Scholar] [CrossRef] [Green Version]
  18. Ruiz, R.G.; Rosell, J.M.C.; Ceccarelli, G.; De Sio, C.; De Angelis, G.C.; Pinto, H.; Astarita, C.; Graziano, A. Progenitor-cell-enriched micrografts as a novel option for the management of androgenetic alopecia. J. Cell. Physiol. 2020, 235, 4587–4593. [Google Scholar] [CrossRef]
  19. Trovato, L.; D’Aquino, R.; Grazianom, A. Techniques and Processing. In Regenerative Medicine Procedures for Aesthetic Physicians; Springer International: Cham, Switzerland, 2019; ISBN 978/3/030/15458/5. [Google Scholar]
  20. Trovato, L.; Graziano, A.; D’Aquino, R. Injection/Application of Micrografts. In Regenerative Medicine Procedures for Aesthetic Physicians; Springer International: Cham, Switzerland, 2019; ISBN 978/3/030/15458/5. [Google Scholar]
  21. Andreone, A.; Hollander, D.D. A Retrospective Study on the Use of Dermis Micrografts in Platelet-Rich Fibrin for the Resurfacing of Massive and Chronic Full-Thickness Burns. Stem Cells Int. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
  22. Tresoldi, M.M.; Graziano, A.; Malovini, A.; Faga, A.; Nicoletti, G. The Role of Autologous Dermal Micrografts in Regenerative Surgery: A Clinical Experimental Study. Stem Cells Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
  23. Uehara, M.; Shimizu, F. Progress report for intractable ulcer and osteomyelitis cases using autologous micrografts. Sage Open Med. Case Rep. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
  24. Gentile, P.; Scioli, M.G.; Bielli, A.; De Angelis, B.; De Sio, C.; De Fazio, D.; Ceccarelli, G.; Trivisonno, A.; Orlandi, A.; Cervelli, V.; et al. Platelet-Rich Plasma and Micrografts Enriched with Autologous Human Follicle Mesenchymal Stem Cells Improve Hair Re-Growth in Androgenetic Alopecia. Biomolecular Pathway Analysis and Clinical Evaluation. Biomedicines 2019, 7, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Kawakami, S.; Shiota, M.; Kon, K.; Shimogishi, M.; Kasugai, S. The Effect of Dissociated Soft Tissue on Osteogenesis: A Preliminary In Vitro Study. Int. J. Oral Maxillofac. Implant. 2019, 34, 651–657. [Google Scholar] [CrossRef] [PubMed]
  26. Lupi, S.M.; Baena, A.R.Y.; Todaro, C.; Ceccarelli, G.; Baena, R.R.Y. Maxillary Sinus Lift Using Autologous Periosteal Micrografts: A New Regenerative Approach and a Case Report of a 3-Year Follow-Up. Case Rep. Dent. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
  27. Viganò, M.; Tessaro, I.; Trovato, L.; Colombini, A.; Scala, M.; Magi, A.; Toto, A.; Peretti, G.; De Girolamo, L. Rationale and pre-clinical evidences for the use of autologous cartilage micrografts in cartilage repair. J. Orthop. Surg. Res. 2018, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
  28. Miranda, R.; Farina, E.; Farina, M.A. Micrografting chronic lower extremity ulcers with mechanically disaggregated skin using a micrograft preparation system. J. Wound Care 2018, 27, 60–65. [Google Scholar] [CrossRef] [PubMed]
  29. Ferrarotti, F.; Romano, F.; Gamba, M.N.; Quirico, A.; Giraudi, M.; Audagna, M.; Aimetti, M. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J. Clin. Periodontol. 2018, 45, 841–850. [Google Scholar] [CrossRef] [PubMed]
  30. De Francesco, F.; Mannucci, S.; Conti, G.; Prè, E.D.; Sbarbati, A.; Riccio, M. A Non-Enzymatic Method to Obtain a Fat Tissue Derivative Highly Enriched in Adipose Stem Cells (ASCs) from Human Lipoaspirates: Preliminary Results. Int. J. Mol. Sci. 2018, 19, 2061. [Google Scholar] [CrossRef] [Green Version]
  31. Noda, S.; Sumita, Y.; Ohba, S.; Yamamoto, H.; Asahina, I. Soft tissue engineering with micronized-gingival connective tissues. J. Cell. Physiol. 2018, 233, 249–258. [Google Scholar] [CrossRef]
  32. Pinto, H. Dermoscopy Is the Crucial Step for Proper Outcome Prospection When Treating Androgenetic Alopecia with the Regenera® Protocol: A Score Proposal. Int. J. Clin. Dev. Anat. 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
  33. Álvarez, X.; Valenzuela, M.; Tuffet, J. Clinical and Histological Evaluation of the Regenera® Method for the Treatment of Androgenetic Alopecia. Int. Educ. Appl. Sci. Res. J. 2018, 3, 2456–5040. [Google Scholar]
  34. Fernandez, A.D.; Luengo, A.B. Biostimulation of Knee Cartilage Using Autologous Micro-Grafts: A Preliminary Study of the Rigenera Protocol in Osteochondral Lesions of the Knee. Rehabil. Sci. 2018, 3, 8–12. [Google Scholar] [CrossRef]
  35. Gentile, P.; Scioli, G.M.; Bielli, A.; Orlandi, A.; Cervelli, V. Comparing different nanofat procedures on scars: Role of the stromal vascular fraction and its clinical implications. Regen. Med. 2017, 12, 939–952. [Google Scholar] [CrossRef] [PubMed]
  36. Álvarez, X.; Valenzuela, M.; Tuffet, J. Microscopic and Histologic Evaluation of the Regenera® Method for the Treatment of Androgenetic Alopecia in a Small Number of Cases. Int. J. Res. Study Med. Health Sci. 2017, 2, 19–22. [Google Scholar]
  37. Baena, R.R.Y.; D’Aquino, R.; Graziano, A.; Trovato, L.; Aloise, A.C.; Ceccarelli, G.; Cusella, G.; Pelegrine, A.A.; Lupi, S.M. Autologous Periosteum-Derived Micrografts and PLGA/HA Enhance the Bone Formation in Sinus Lift Augmentation. Front. Cell Dev. Biol. 2017, 5, 10–3389. [Google Scholar] [CrossRef] [Green Version]
  38. Gentile, P.; Scioli, M.G.; Bielli, A.; Orlandi, A.; Cervelli, V. Stem cells from human hair follicles: First mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Investig. 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  39. Jimi, S.; Kimura, M.; De Francesco, F.; Riccio, M.; Hara, S.; Ohjimi, H. Acceleration Mechanisms of Skin Wound Healing by Autologous Micrograft in Mice. Int. J. Mol. Sci. 2017, 18, 1675. [Google Scholar] [CrossRef]
  40. Ceccarelli, G.; Gentile, P.; Marcarelli, M.; Balli, M.; Ronzoni, F.L.; Benedetti, L.; De Angelis, M.G.C.; De Angelis, M.C. In Vitro and In Vivo Studies of Alar-Nasal Cartilage Using Autologous Micro-Grafts: The Use of the Rigenera® Protocol in the Treatment of an Osteochondral Lesion of the Nose. Pharmaceuticals 2017, 10, 53. [Google Scholar] [CrossRef] [Green Version]
  41. Lampinen, M.; Nummi, A.; Nieminen, T.; Harjula, A.; Kankuri, E. Intraoperative processing and epicardial transplantation of autologous atrial tissue for cardiac repair. J. Heart Lung Transplant. 2017, 36, 1020–1022. [Google Scholar] [CrossRef] [Green Version]
  42. Nummi, A.; The AADC Consortium; Nieminen, T.; Pätilä, T.; Lampinen, M.; Lehtinen, M.L.; Kivistö, S.; Holmström, M.; Wilkman, E.; Teittinen, K.; et al. Epicardial delivery of autologous atrial appendage micrografts during coronary artery bypass surgery—Safety and feasibility study. Pilot Feasibility Study 2017, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
  43. De Francesco, F.; Graziano, A.; Trovato, L.; Ceccarelli, G.; Romano, M.; Marcarelli, M.; De Angelis, G.M.C.; Cillo, U.; Riccio, M.; Ferraro, G.A. Erratum to: A Regenerative Approach with Dermal Micrografts in the Treatment of Chronic Ulcers. Stem Cell Rev. Rep. 2016, 13, 149. [Google Scholar] [CrossRef]
  44. Bocchiotti, M.A.; Bogetti, P.; Parisi, A.; Rivarossa, F.; Frenello, A.; Baglioni, E.A. Management of Fournier’s gangrene non-healing wounds by autologous skin micrograft biotechnology: A new technique. J. Wound Care 2017, 26, 314–317. [Google Scholar] [CrossRef] [PubMed]
  45. Monti, M.; Graziano, A.; Rizzo, S.; Perotti, C.; Del Fante, C.; D’Aquino, R.; Redi, C.A.; Baena, R.R.Y. In Vitro and In Vivo Differentiation of Progenitor Stem Cells Obtained After Mechanical Digestion of Human Dental Pulp. J. Cell. Physiol. 2017, 232, 548–555. [Google Scholar] [CrossRef] [PubMed]
  46. Gentile, P.; Scioli, M.G.; Bielli, A.; Orlandi, A.; Cervelli, V. Reconstruction of Alar Nasal Cartilage Defects Using a Tissue Engineering Technique Based on a Combined Use of Autologous Chondrocyte Micrografts and Platelet-rich Plasma: Preliminary Clinical and Instrumental Evaluation. Plast. Reconstr. Surg. Glob. Open 2016, 26, e1027. [Google Scholar] [CrossRef]
  47. Gentile, P.; Scioli, M.G.; Bielli, A.; Orlandi, A.; Cervelli, V. A combined use of Chondrocytes Micro Grafts (CMG) Mixed with Platelet Rich Plasma (PRP) in Patients Affected by Pinch Nose Deformity. J. Regen. Med. 2018, 5. [Google Scholar] [CrossRef]
  48. Trovato, L.; Failla, G. Regenerative Surgery in the Management of the Leg Ulcers. J. Cell Sci. Ther. 2016, 07, 1–3. [Google Scholar] [CrossRef]
  49. Marcarelli, M.; Trovato, L.; Novarese, E.; Riccio, M.; Graziano, A. Rigenera protocol in the treatment of surgical wound dehiscence. Int. Wound J. 2016, 14, 277–281. [Google Scholar] [CrossRef]
  50. D’Aquino, R.; Trovato, L.; Graziano, A.; Ceccarelli, G.; De Angelis, G.C.; Marangini, A.; Nisio, A.; Galli, M.; Pasi, M.; Finotti, M.; et al. Periosteum-derived micro-grafts for tissue regeneration of human maxillary bone. J. Transl. Sci. 2016, 2, 125–129. [Google Scholar] [CrossRef] [Green Version]
  51. Baglioni, E.; Trovato, L.; Marcarelli, M.; Frenello, A.; Bocchiotti, M.A. Treatment of Oncological Post-surgical Wound Dehiscence with Autologous Skin Micrografts. Anticancer Res. 2016, 36, 975–980. [Google Scholar]
  52. Purpura, V.; Bondioli, E.; Graziano, A.; Trovato, L.; Melandri, D.; Ghetti, M.; Marchesini, A.; De Angelis, M.G.C.; Benedetti, L.; Ceccarelli, G.; et al. Tissue Characterization after a New Disaggregation Method for Skin Micro-Grafts Generation. J. Vis. Exp. 2016. [Google Scholar] [CrossRef] [Green Version]
  53. Svolacchia, F.; De Francesco, F.; Trovato, L.; Graziano, A.; Ferraro, G.A. An innovative regenerative treatment of scars with dermal micrografts. J. Cosmet. Dermatol. 2016, 15, 245–253. [Google Scholar] [CrossRef] [PubMed]
  54. Trovato, L.; Monti, M.; Del Fante, C.; Cervio, M.; Lampinen, M.; Ambrosio, L.; Redi, C.A.; Perotti, C.; Kankuri, E.; Ambrosio, G.; et al. A New Medical device rigeneracons allows to obtain viable micro-grafts from mechanical disaggregation of human tissues. J. Cell Physiol. 2015, 230, 2299–2303. [Google Scholar] [CrossRef] [PubMed]
  55. Giaccone, M.; Brunetti, M.; Camandona, M.; Trovato, L.; Graziano, A. A New Medical Device, Based on Rigenera Protocol, in the Management of Complex Wounds. J. Stem Cells Res. Rev. Rep. 2014, 1, 1013. [Google Scholar]
  56. Zanzottera, F.; Lavezzari, E.; Trovato, L.; Icardi, A.; Graziano, A. Adipose Derived Stem Cells and Growth Factors Applied on Hair Transplantation. Follow-Up of Clinical Outcome. J. Cosmet. Dermatol. Sci. Appl. 2014, 4, 268–274. [Google Scholar] [CrossRef] [Green Version]
  57. Aimetti, M.; Ferrarotti, F.; Cricenti, L.; Mariani, G.M.; Romano, F. Autologous Dental Pulp Stem in periodontal regeneration: A Case Report. Int. J. Periodontics Restor. Dent. 2014, 34 (Suppl. S27–S33.). [Google Scholar] [CrossRef]
  58. Carinci, F.; Motroni, A.; Graziano, A.; Zollino, I.; Brunelli, G.; D′aquino, R. Sinus lift tissue engineering using autologous pulp micro-grafts: A case report of bone density evaluation. J. Indian Soc. Periodontol. 2013, 17, 644–647. [Google Scholar] [CrossRef]
  59. Graziano, A.; Carinci, F.; Scolaro, S. Periodontal tissue generation using autologous dental ligament micro-grafts: Case report with 6 months follow-up. Ann. Oral Maxillofac. Surg. 2013, 1. [Google Scholar] [CrossRef]
  60. D’Aquino, R.; De Rosa, A.; Lanza, V.; Tirino, V.; Laino, L.; Graziano, A.; Desiderio, V.; Laino, G.; Papaccio, G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur. Cells Mater. 2009, 18, 75–83. [Google Scholar] [CrossRef]
  61. Aimetti, M.; Ferrarotti, F.; Mariani, G.M.; Cricenti, L.; Romano, F. Use of Dental Pulp Stem Cells/Collagen Sponge Biocomplex in the Treatment of Non-Contained Intrabony Defects: A Case Series. Clin. Adv. Periodontics 2015, 5, 104–109. [Google Scholar] [CrossRef]
Table 1. List of the papers which suggest the suitability of the device for in vitro context.
Table 1. List of the papers which suggest the suitability of the device for in vitro context.
Xie Y, Lampinen M, Takala J, Sikorski V, Soliymani R, Tarkia M, Lalowski M, Mervaala E, Kupari M, Zheng Z, Hu S, Harjula A, Kankuri, E.; AADC consortium. Epicardial transplantation of atrial appendage micrograft patch salvages myocardium after infarction. J Heart Lung Transplant. July 2020;39(7):707–718. doi: 10.1016/j.healun.2020.03.023. Epub 7 April 2020. PMID: 32334944.
Dai Prè E, Busato A, Mannucci S, Vurro F, De Francesco F, Riccio V, Solito S, Biswas R, Bernardi P, Riccio M, Sbarbati A. In Vitro Characterization of Adipose Stem Cells Non-Enzymatically Extracted from the Thigh and Abdomen. Int J Mol Sci. 27 April 2020;21(9):3081. doi: 10.3390/ijms21093081. PMID: 32349299; PMCID: PMC7247667.
Senesi L, De Francesco F, Farinelli L, Manzotti S, Gagliardi G, Papalia GF, Riccio M, Gigante A. Mechanical and Enzymatic Procedures to Isolate the Stromal Vascular Fraction From Adipose Tissue: Preliminary Results. Front Cell Dev Biol. 7 June 2019;7:88. doi: 10.3389/fcell.2019.00088. PMID: 31231649; PMCID: PMC6565890.
Balli M, Chui JS, Athanasouli P, Abreu de Oliveira WA, El Laithy Y, Sampaolesi M, Lluis F. Activator Protein-1 Transcriptional Activity Drives Soluble Micrograft-Mediated Cell Migration and Promotes the Matrix Remodeling Machinery. Stem Cells Int. 31 December 2019;2019:6461580. doi: 10.1155/2019/6461580. PMID: 32082384; PMCID: PMC7012246.
Balli M, Vitali F, Janiszewski A, Caluwé E, Cortés-Calabuig A, Carpentier S, Duelen R, Ronzoni F, Marcelis L, Bosisio FM, Bellazzi R, Luttun A, De Angelis MGC, Ceccarelli G, Lluis F, Sampaolesi M. Autologous micrograft accelerates endogenous wound healing response through ERK-induced cell migration. Cell Death Differ. 25 October 2019. doi: 10.1038/s41418-019-0433-3.
Kawakami S, Shiota M, Kon K, Shimogishi M, Kasugai S.The Effect of Dissociated Soft Tissue on Osteogenesis: A Preliminary In Vitro Study. Int J Oral Maxillofac Implants. May/June 2019;34(3):651–657. doi: 10.11607/jomi.7021.
Viganò M, Tessaro I, Trovato L, Colombini A, Scala M, Magi A, Toto A, Peretti G, de Girolamo L. Rationale and pre-clinical evidences for the use of autologous cartilage micrografts in cartilage repair. J Orthop Surg Res. 6 November 2019;13(1):279. doi: 10.1186/s13018-018-0983-y
Francesco De Francesco, Silvia Mannucci, Giamaica Conti, Elena Dai Prè, Andrea Sbarbati and Michele Riccio. A Non-Enzymatic Method to Obtain a Fat Tissue Derivative Highly Enriched in Adipose Stem Cells (ASCs) from Human Lipoaspirates: Preliminary Results. Int. J. Mol. Sci. 2018, 19, 2061; doi:10.3390/ijms19072061
Noda S, Sumita Y, Ohba S, Yamamoto H, Asahina I. Soft tissue engineering with micronized-gingival connective tissues. J Cell Physiol. 2018; 233:249–258.
Rodriguez Y Baena R, D’Aquino R, Graziano A, Trovato L, Aloise AC, Ceccarelli G, Cusella G, Pelegrine AA, Lupi SM. Autologous Periosteum-Derived Micrografts and PLGA/HA Enhance the Bone Formation in Sinus Lift Augmentation. Front Cell Dev Biol. 27 September 2017;5:87.doi: 10.3389/fcell.2017.00087. eCollection 2017.
Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Stem cells from human hair follicles: first mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Investig 2017;4:58.
Jimi Shiro, Kimura Masahiko, De Francesco Francesco, Riccio Michele, Hara Shuuji, Ohjimi Hiroyuki. Acceleration Mechanisms of Skin Wound Healing by Autologous Micrograft in Mice. Int. J. Mol. Sci. 2017, 18, 1675; doi:10.3390/ijms18081675
Ceccarelli G, Gentile P, Marcarelli M, Balli M, Ronzoni FL, Benedetti L, Cusella De Angelis MG.In Vitro and In Vivo Studies of Alar-Nasal Cartilage Using Autologous Micro-Grafts: The Use of the Rigenera®® Protocol in the Treatment of an Osteochondral Lesion of the Nose. Pharmaceuticals (Basel). 13 June 2017;10(2). pii: E53. doi: 10.3390/ph10020053.
Monti M, Graziano A, Rizzo S, Perotti C, Del Fante C, d’Aquino R, Redi C, Rodriguez Y Baena R. In Vitro and In Vivo Differentiation of Progenitor Stem Cells Obtained after Mechanical Digestion of Human Dental Pulp. J Cell Physiol 232: 548–555, 2017 doi: 10.1002/jcp.25452
Purpura V, Bondioli E, Graziano A, Trovato L, Melandri D, Ghetti M, Marchesini A, Cusella de Angelis MG, Benedetti L, Ceccarelli G, Riccio M. Tissue Characterization After a New Disaggregation Method for Skin Micro-Grafts Generation. J Vis Exp. 4 March 2016;(109).e53579 doi: 10.3791/53579
Trovato L, Monti M, Del Fante C, Cervio M, Lampinen M, Ambrosio L, Redi CA, Perotti C, Kankuri E, Ambrosio G, Rodriguez Y Baena R, Pirozzi G, Graziano A. A New Medical device rigeneracons allows to obtain viable micro-grafts from mechanical disaggregation of human tissues. J Cell Physiol, 2015;230:2299-303.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Astarita, C.; Trovato, L.; Graziano, A. Comment on Celentano et al. Suitability of a Progenitor Cell-Enriching Device for In Vitro Applications. Coatings 2021, 11, 146. Coatings 2021, 11, 636. https://doi.org/10.3390/coatings11060636

AMA Style

Astarita C, Trovato L, Graziano A. Comment on Celentano et al. Suitability of a Progenitor Cell-Enriching Device for In Vitro Applications. Coatings 2021, 11, 146. Coatings. 2021; 11(6):636. https://doi.org/10.3390/coatings11060636

Chicago/Turabian Style

Astarita, Carlo, Letizia Trovato, and Antonio Graziano. 2021. "Comment on Celentano et al. Suitability of a Progenitor Cell-Enriching Device for In Vitro Applications. Coatings 2021, 11, 146" Coatings 11, no. 6: 636. https://doi.org/10.3390/coatings11060636

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop