Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications
Abstract
:1. Introduction
2. Biocompatibility of PEO Coatings
3. Corrosion Resistance Properties
4. Wear and Tribology of the PEO Coatings
5. Photoluminescence Performance
6. Concluding Remarks and Future Outlook
- Inducing new nanoparticles in electrolytes during the PEO process opens a new path for future research, where there is a lack of studies on biomedical applications of Zr and Zr-alloys, such as enhancing the coatings’ bioresponse and efficient delivering drugs to the body tissues.
- Poor surface features such as numerous pores and cracks confine the protection mechanism to the barrier inhibition, in which the coating halts the penetration of aggressive ions. However, producing composite coatings with protective agents such as sacrificing anodic nanoparticles can endow active protection to the substrates.
- Wear behavior of coatings requires significant improvements. Besides, the wear mechanism of the coating has not been studied comprehensively. Using the PEO coated Zr-alloys in nuclear industries and applications demanding significant protection against fretting wear and corrosion requires more studies with simulated conditions.
- Tuning ZrO2 bandgap for photocatalytic applications can draw attention to producing composite coatings with versatile applicability in splitting water and other compounds.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fattah-alhosseini, A.; Molaei, M.; Attarzadeh, N.; Babaei, K.; Attarzadeh, F. On the Enhanced Antibacterial Activity of Plasma Electrolytic Oxidation (PEO) Coatings That Incorporate Particles: A Review. Ceram. Int. 2020, 46, 20587–20607. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Molaei, M.; Babaei, K. The Effects of Nano- and Micro-Particles on Properties of Plasma Electrolytic Oxidation (PEO) Coatings Applied on Titanium Substrates: A Review. Surf. Interfaces 2020, 21, 100659. [Google Scholar] [CrossRef]
- Molaei, M.; Attarzadeh, N.; Fattah-alhosseini, A. Tailoring the Biological Response of Zirconium Implants Using Zirconia Bioceramic Coatings: A Systematic Review. J. Trace Elem. Med. Biol. 2021, 66, 126756. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Yarmand, B.; Sharifi-Asl, S.; Mozafari, M. Improved Corrosion Performance of Biodegradable Magnesium in Simulated Inflammatory Condition via Drug-Loaded Plasma Electrolytic Oxidation Coatings. Mater. Chem. Phys. 2020, 239, 122003. [Google Scholar] [CrossRef]
- Wang, D.; Liu, X.; Wu, Y.; Han, H.; Yang, Z.; Su, Y.; Zhang, X.; Wu, G.; Shen, D. Evolution Process of the Plasma Electrolytic Oxidation (PEO) Coating Formed on Aluminum in an Alkaline Sodium Hexametaphosphate ((NaPO3)6) Electrolyte. J. Alloy. Compd. 2019, 798, 129–143. [Google Scholar] [CrossRef]
- Sankara Narayanan, T.S.N.; Park, I.S.; Lee, M.H. Strategies to Improve the Corrosion Resistance of Microarc Oxidation (MAO) Coated Magnesium Alloys for Degradable Implants: Prospects and Challenges. Prog. Mater. Sci. 2014, 60, 1–71. [Google Scholar] [CrossRef]
- Li, Z.; Cai, Z.; Cui, X.-J.; Liu, R.; Yang, Z.; Zhu, M. Influence of Nanoparticle Additions on Structure and Fretting Corrosion Behavior of Micro-Arc Oxidation Coatings on Zirconium Alloy. Surf. Coat. Technol. 2021, 410, 126949. [Google Scholar] [CrossRef]
- Li, Z.; Cai, Z.; Ding, Y.; Cui, X.-J.; Yang, Z.; Zhu, M. Characterization of Graphene Oxide/ZrO2 Composite Coatings Deposited on Zirconium Alloy by Micro-Arc Oxidation. Appl. Surf. Sci. 2020, 506, 144928. [Google Scholar] [CrossRef]
- Arun, S.; Arunnellaiappan, T.; Rameshbabu, N. Fabrication of the Nanoparticle Incorporated PEO Coating on Commercially Pure Zirconium and Its Corrosion Resistance. Surf. Coat. Technol. 2016, 305, 264–273. [Google Scholar] [CrossRef]
- Qin, W.; Nam, C.; Li, H.L.; Szpunar, J.A. Tetragonal Phase Stability in ZrO2 Film Formed on Zirconium Alloys and Its Effects on Corrosion Resistance. Acta Mater. 2007, 55, 1695–1701. [Google Scholar] [CrossRef]
- Cheng, Y.; Matykina, E.; Arrabal, R.; Skeldon, P.; Thompson, G.E. Plasma Electrolytic Oxidation and Corrosion Protection of Zircaloy-4. Surf. Coat. Technol. 2012, 206, 3230–3239. [Google Scholar] [CrossRef]
- Sandhyarani, M.; Rameshbabu, N.; Venkateswarlu, K.; Sreekanth, D.; Subrahmanyam, C. Surface Morphology, Corrosion Resistance and in Vitro Bioactivity of P Containing ZrO2 Films Formed on Zr by Plasma Electrolytic Oxidation. J. Alloy. Compd. 2013, 553, 324–332. [Google Scholar] [CrossRef]
- Yan, Y.; Han, Y.; Li, D.; Huang, J.; Lian, Q. Effect of NaAlO2 Concentrations on Microstructure and Corrosion Resistance of Al2O3/ZrO2 Coatings Formed on Zirconium by Micro-Arc Oxidation. Appl. Surf. Sci. 2010, 256, 6359–6366. [Google Scholar] [CrossRef]
- Gefen, A. Optimizing the Biomechanical Compatibility of Orthopedic Screws for Bone Fracture Fixation. Med. Eng. Phys. 2002, 24, 337–347. [Google Scholar] [CrossRef]
- Thomsen, P.; Larsson, C.; Ericson, L.E.; Sennerby, L.; Lausmaa, J.; Kasemo, B. Structure of the Interface between Rabbit Cortical Bone and Implants of Gold, Zirconium and Titanium. J. Mater. Sci. Mater. Med. 1997, 8, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-T.; Lee, T.-M.; Lui, T.-S. Enhanced Osteoblastic Cell Response on Zirconia by Bio-Inspired Surface Modification. Colloids Surf. B Biointerfaces 2013, 106, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, X.; Nie, X. Deposition and Properties of Zirconia Coatings on a Zirconium Alloy Produced by Pulsed DC Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2013, 221, 150–157. [Google Scholar] [CrossRef]
- Sanchez, A.G.; Schreiner, W.; Duffó, G.; Ceré, S. Surface Characterization of Anodized Zirconium for Biomedical Applications. Appl. Surf. Sci. 2011, 257, 6397–6405. [Google Scholar] [CrossRef]
- Zhou, F.Y.; Wang, B.L.; Qiu, K.J.; Li, H.F.; Li, L.; Zheng, Y.F.; Han, Y. In Vitro Corrosion Behavior and Cellular Response of Thermally Oxidized Zr–3Sn Alloy. Appl. Surf. Sci. 2013, 265, 878–888. [Google Scholar] [CrossRef]
- Brenier, R.; Mugnier, J.; Mirica, E. XPS Study of Amorphous Zirconium Oxide Films Prepared by Sol–Gel. Appl. Surf. Sci. 1999, 143, 85–91. [Google Scholar] [CrossRef]
- Leushake, U.; Krell, T.; Schulz, U.; Peters, M.; Kaysser, W.A.; Rabin, B.H. Microstructure and Phase Stability of EB-PVD Alumina and Alumina/Zirconia for Thermal Barrier Coating Applications. Surf. Coat. Technol. 1997, 94–95, 131–136. [Google Scholar] [CrossRef]
- Shanmugavelayutham, G.; Yano, S.; Kobayashi, A. Microstructural Characterization and Properties of ZrO2/Al2O3 Thermal Barrier Coatings by Gas Tunnel-Type Plasma Spraying. Vacuum 2006, 80, 1336–1340. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, K.; Bai, C.; Li, X.; Dang, X.; Zhang, C. The Influence of UV Irradiation on the Biological Properties of MAO-Formed ZrO2. Colloids Surf. B Biointerfaces 2012, 89, 40–47. [Google Scholar] [CrossRef]
- Sandhyarani, M.; Prasadrao, T.; Rameshbabu, N. Role of Electrolyte Composition on Structural, Morphological and in-Vitro Biological Properties of Plasma Electrolytic Oxidation Films Formed on Zirconium. Appl. Surf. Sci. 2014, 317, 198–209. [Google Scholar] [CrossRef]
- Han, Y.; Yan, Y.; Lu, C. Ultraviolet-Enhanced Bioactivity of ZrO2 Films Prepared by Micro-Arc Oxidation. Thin Solid Film. 2009, 517, 1577–1581. [Google Scholar] [CrossRef]
- Han, Y.; Yan, Y.; Lu, C.; Zhang, Y.; Xu, K. Bioactivity and Osteoblast Response of the Micro-Arc Oxidized Zirconia Films. J. Biomed. Mater. Res. Part A 2009, 88A, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Han, Y.; Lu, C. The Effect of Chemical Treatment on Apatite-Forming Ability of the Macroporous Zirconia Films Formed by Micro-Arc Oxidation. Appl. Surf. Sci. 2008, 254, 4833–4839. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, S.; Han, Y.; Xiao, C.; Tang, W. Formation and Bioactivity of HA Nanorods on Micro-Arc Oxidized Zirconium. Mater. Sci. Eng. C 2014, 43, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, S.; Uzunoglu, A.; Stanciu, L.; Tarakci, M.; Gencer, Y. Direct Fabrication of Crystalline Hydroxyapatite Coating on Zirconium by Single-Step Plasma Electrolytic Oxidation Process. Surf. Coat. Technol. 2016, 301, 74–79. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Surmeneva, M.A.; Ivanova, A.A. Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis—A Review. Acta Biomater. 2014, 10, 557–579. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, B.; Ravishankar, N. Controlled Synthesis of Plate-Shaped Hydroxyapatite and Implications for the Morphology of the Apatite Phase in Bone. Biomaterials 2008, 29, 4855–4863. [Google Scholar] [CrossRef]
- Roy, M.; Bandyopadhyay, A.; Bose, S. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants. Surf. Coat. Technol. 2011, 205, 2785–2792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.-F.; Lou, B.-S.; Yang, Y.-C.; Wu, P.-S.; Chung, R.-J.; Lee, J.-W. Effects of Duty Cycle and Electrolyte Concentration on the Microstructure and Biocompatibility of Plasma Electrolytic Oxidation Treatment on Zirconium Metal. Thin Solid Film. 2015, 596, 87–93. [Google Scholar] [CrossRef]
- Bayati, M.R.; Aminzare, M.; Molaei, R.; Sadrnezhaad, S.K. Micro Arc Oxidation of Nano-Crystalline Ag-Doped TiO2 Semiconductors. Mater. Lett. 2011, 65, 840–842. [Google Scholar] [CrossRef]
- Teker, D.; Muhaffel, F.; Menekse, M.; Karaguler, N.G.; Baydogan, M.; Cimenoglu, H. Characteristics of Multi-Layer Coating Formed on Commercially Pure Titanium for Biomedical Applications. Mater. Sci. Eng. C 2015, 48, 579–585. [Google Scholar] [CrossRef]
- Fidan, S.; Muhaffel, F.; Riool, M.; Cempura, G.; de Boer, L.; Zaat, S.A.J.; Filemonowicz, A.C.; Cimenoglu, H. Fabrication of Oxide Layer on Zirconium by Micro-Arc Oxidation: Structural and Antimicrobial Characteristics. Mater. Sci. Eng. C 2017, 71, 565–569. [Google Scholar] [CrossRef]
- Durdu, S.; Aktug, S.L.; Aktas, S.; Yalcin, E.; Cavusoglu, K.; Altinkok, A.; Usta, M. Characterization and in Vitro Properties of Antibacterial Ag-Based Bioceramic Coatings Formed on Zirconium by Micro Arc Oxidation and Thermal Evaporation. Surf. Coat. Technol. 2017, 331, 107–115. [Google Scholar] [CrossRef]
- Aktuğ, S.L.; Durdu, S.; Yalçın, E.; Çavuşoğlu, K.; Usta, M. In Vitro Properties of Bioceramic Coatings Produced on Zirconium by Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2017, 324, 129–139. [Google Scholar] [CrossRef]
- Aktug, S.L.; Kutbay, I.; Usta, M. Characterization and Formation of Bioactive Hydroxyapatite Coating on Commercially Pure Zirconium by Micro Arc Oxidation. J. Alloy. Compd. 2017, 695, 998–1004. [Google Scholar] [CrossRef]
- Cengiz, S.; Azakli, Y.; Tarakci, M.; Stanciu, L.; Gencer, Y. Microarc Oxidation Discharge Types and Bio Properties of the Coating Synthesized on Zirconium. Mater. Sci. Eng. C 2017, 77, 374–383. [Google Scholar] [CrossRef]
- Sandhyarani, M.; Rameshbabu, N.; Venkateswarlu, K. Fabrication, Characterization and in-Vitro Evaluation of Nanostructured Zirconia/Hydroxyapatite Composite Film on Zirconium. Surf. Coat. Technol. 2014, 238, 58–67. [Google Scholar] [CrossRef]
- Durdu, S.; Aktug, S.L.; Aktas, S.; Yalcin, E.; Usta, M. Fabrication and in Vitro Properties of Zinc-Based Superhydrophilic Bioceramic Coatings on Zirconium. Surf. Coat. Technol. 2018, 344, 467–478. [Google Scholar] [CrossRef]
- Zhang, L.; Han, Y.; Tan, G. Hydroxyaptite Nanorods Patterned ZrO2 Bilayer Coating on Zirconium for the Application of Percutaneous Implants. Colloids Surf. B Biointerfaces 2015, 127, 8–14. [Google Scholar] [CrossRef]
- Aktug, S.L.; Durdu, S.; Aktas, S.; Yalcin, E.; Usta, M. Characterization and Investigation of in Vitro Properties of Antibacterial Copper Deposited on Bioactive ZrO2 Coatings on Zirconium. Thin Solid Film. 2019, 681, 69–77. [Google Scholar] [CrossRef]
- Cengiz, S.; Uzunoglu, A.; Huang, S.M.; Stanciu, L.; Tarakci, M.; Gencer, Y. An In-Vitro Study: The Effect of Surface Properties on Bioactivity of the Oxide Layer Fabricated on Zr Substrate by PEO. Surf. Interfaces 2021, 22, 100884. [Google Scholar] [CrossRef]
- Motta, A.T.; Yilmazbayhan, A.; da Silva, M.J.G.; Comstock, R.J.; Was, G.S.; Busby, J.T.; Gartner, E.; Peng, Q.; Jeong, Y.H.; Park, J.Y. Zirconium Alloys for Supercritical Water Reactor Applications: Challenges and Possibilities. J. Nucl. Mater. 2007, 371, 61–75. [Google Scholar] [CrossRef]
- Yau, T.-L.; Annamalai, V.E. Corrosion of Zirconium and its Alloys. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-803581-8. [Google Scholar]
- Yau, T.-L.; Sutherlin, R.C.; Chang, A.T.I.W. Corrosion of Zirconium and Zirconium Alloys. In Corrosion: Materials; Stephen, D.C., Bernard, S.C., Eds.; ASM International: Ohio, OH, USA, 2018; Chapter 20; pp. 300–324. [Google Scholar]
- Chen, Y.; Nie, X.; Northwood, D.O. Investigation of Plasma Electrolytic Oxidation (PEO) Coatings on a Zr–2.5Nb Alloy Using High Temperature/Pressure Autoclave and Tribological Tests. Surf. Coat. Technol. 2010, 205, 1774–1782. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, F. Plasma Electrolytic Oxidation of Zircaloy-4 Alloy with DC Regime and Properties of Coatings. Trans. Nonferrous Met. Soc. China 2012, 22, 1638–1646. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, F.; Matykina, E.; Skeldon, P.; Thompson, G.E. The Influences of Microdischarge Types and Silicate on the Morphologies and Phase Compositions of Plasma Electrolytic Oxidation Coatings on Zircaloy-2. Corros. Sci. 2012, 59, 307–315. [Google Scholar] [CrossRef]
- Sreekanth, D.; Rameshbabu, N.; Venkateswarlu, K. Effect of Various Additives on Morphology and Corrosion Behavior of Ceramic Coatings Developed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation. Ceram. Int. 2012, 38, 4607–4615. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, F.; Dong, J.; Wu, X.; Xue, Z.; Matykina, E.; Skeldon, P.; Thompson, G.E. Comparison of Plasma Electrolytic Oxidation of Zirconium Alloy in Silicate- and Aluminate-Based Electrolytes and Wear Properties of the Resulting Coatings. Electrochim. Acta 2012, 85, 25–32. [Google Scholar] [CrossRef]
- Cheng, Y.; Cao, J.; Peng, Z.; Wang, Q.; Matykina, E.; Skeldon, P.; Thompson, G.E. Wear-Resistant Coatings Formed on Zircaloy-2 by Plasma Electrolytic Oxidation in Sodium Aluminate Electrolytes. Electrochim. Acta 2014, 116, 453–466. [Google Scholar] [CrossRef]
- Trivinho-Strixino, F.; da Silva, D.X.; Paiva-Santos, C.O.; Pereira, E.C. Tetragonal to Monoclinic Phase Transition Observed during Zr Anodisation. J. Solid State Electrochem. 2013, 17, 191–199. [Google Scholar] [CrossRef]
- Zou, Z.; Xue, W.; Jia, X.; Du, J.; Wang, R.; Weng, L. Effect of Voltage on Properties of Microarc Oxidation Films Prepared in Phosphate Electrolyte on Zr–1Nb Alloy. Surf. Coat. Technol. 2013, 222, 62–67. [Google Scholar] [CrossRef]
- Xue, W.; Zhu, Q.; Jin, Q.; Hua, M. Characterization of Ceramic Coatings Fabricated on Zirconium Alloy by Plasma Electrolytic Oxidation in Silicate Electrolyte. Mater. Chem. Phys. 2010, 120, 656–660. [Google Scholar] [CrossRef]
- Sukumaran, A.; Sampatirao, H.; Balasubramanian, R.; Parfenov, E.; Mukaeva, V.; Nagumothu, R. Formation of ZrO2–SiC Composite Coating on Zirconium by Plasma Electrolytic Oxidation in Different Electrolyte Systems Comprising of SiC Nanoparticles. Trans. Inst. Met. 2018, 71, 1699–1713. [Google Scholar] [CrossRef]
- Wang, Y.M.; Feng, W.; Xing, Y.R.; Ge, Y.L.; Guo, L.X.; Ouyang, J.H.; Jia, D.C.; Zhou, Y. Degradation and Structure Evolution in Corrosive LiOH Solution of Microarc Oxidation Coated Zircaloy-4 Alloy in Silicate and Phosphate Electrolytes. Appl. Surf. Sci. 2018, 431, 2–12. [Google Scholar] [CrossRef]
- Wu, J.; Lu, P.; Dong, L.; Zhao, M.; Li, D.; Xue, W. Combination of Plasma Electrolytic Oxidation and Pulsed Laser Deposition for Preparation of Corrosion-Resisting Composite Film on Zirconium Alloys. Mater. Lett. 2020, 262, 127080. [Google Scholar] [CrossRef]
- Yilmazbayhan, A.; Motta, A.T.; Comstock, R.J.; Sabol, G.P.; Lai, B.; Cai, Z. Structure of Zirconium Alloy Oxides Formed in Pure Water Studied with Synchrotron Radiation and Optical Microscopy: Relation to Corrosion Rate. J. Nucl. Mater. 2004, 324, 6–22. [Google Scholar] [CrossRef]
- Raj, B.; Mudali, U.K. Materials Development and Corrosion Problems in Nuclear Fuel Reprocessing Plants. Prog. Nucl. Energy 2006, 48, 283–313. [Google Scholar] [CrossRef]
- Fisher, N.J.; Weckwerth, M.K.; Grandison, D.A.E.; Cotnam, B.M. Fretting-Wear of Zirconium Alloys. Nucl. Eng. Des. 2002, 213, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Helmi Attia, M. On the Fretting Wear Mechanism of Zr-Alloys. Tribol. Int. 2006, 39, 1320–1326. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, Z.; Wang, Q.; Wu, X.-Q.; Matykina, E.; Skeldon, P.; Thompson, G.E. New Findings on Properties of Plasma Electrolytic Oxidation Coatings from Study of an Al–Cu–Li Alloy. Electrochim. Acta 2013, 107, 358–378. [Google Scholar] [CrossRef]
- Martini, C.; Ceschini, L.; Tarterini, F.; Paillard, J.M.; Curran, J.A. PEO Layers Obtained from Mixed Aluminate–Phosphate Baths on Ti–6Al–4V: Dry Sliding Behaviour and Influence of a PTFE Topcoat. Wear 2010, 269, 747–756. [Google Scholar] [CrossRef]
- Yan, Y.; Han, Y.; Huang, J. Formation of Al2O3–ZrO2 Composite Coating on Zirconium by Micro-Arc Oxidation. Scr. Mater. 2008, 59, 203–206. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Han, Y.; Tang, W. A Nanoplate-like α-Al2O3 out-Layered Al2O3-ZrO2 Coating Fabricated by Micro-Arc Oxidation for Hip Joint Prosthesis. Appl. Surf. Sci. 2016, 361, 141–149. [Google Scholar] [CrossRef]
- Wei, K.; Chen, L.; Qu, Y.; Yu, J.; Jin, X.; Du, J.; Xue, W.; Zhang, J. Tribological Properties of Microarc Oxidation Coatings on Zirlo Alloy. Surf. Eng. 2019, 35, 692–700. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Aliev, V.S.; Kruchinin, V.N.; Ramana, C.V. Optical Properties of ZrO2 Films Fabricated by Ion Beam Sputtering Deposition at Low Temperature. In Proceedings of the 2007 International Forum on Strategic Technology, Ulaanbaatar, Mongolia, 3–6 October 2007; pp. 529–531. [Google Scholar]
- Ramana, C.V.; Utsunomiya, S.; Ewing, R.C.; Becker, U.; Atuchin, V.V.; Aliev, V.S.; Kruchinin, V.N. Spectroscopic Ellipsometry Characterization of the Optical Properties and Thermal Stability of ZrO2 Films Made by Ion-Beam Assisted Deposition. Appl. Phys. Lett. 2008, 92, 11917. [Google Scholar] [CrossRef]
- Ramana, C.V.; Vemuri, R.S.; Fernandez, I.; Campbell, A.L. Size-Effects on the Optical Properties of Zirconium Oxide Thin Films. Appl. Phys. Lett. 2009, 95, 231905. [Google Scholar] [CrossRef]
- Noor-A-Alam, M.; Ramana, C.; Choudhuri, A. Analysis of microstructure and thermal stability of hafnia-zirconia based thermal barrier coatings. In Proceedings of the 9th Annual International Energy Conversion Engineering Conference, International Energy Conversion Engineering Conference (IECEC), San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar]
- Lokesha, H.S.; Nagabhushana, K.R.; Chithambo, M.L.; Singh, F. Down and Upconversion Photoluminescence of ZrO2:Er3+ Phosphor Irradiated with 120 MeV Gold Ions. Mater. Res. Express 2020, 7, 64006. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S. Photoluminescence Studies of ZrO2:Tm3+/Yb3+ Coatings Formed by Plasma Electrolytic Oxidation. J. Lumin. 2019, 214, 116568. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S. Photoluminescence Properties of Pr3+ Doped ZrO2 Formed by Plasma Electrolytic Oxidation. J. Alloy. Compd. 2019, 803, 126–134. [Google Scholar] [CrossRef]
- Stojadinović, S.; Tadić, N.; Vasilić, R. Photoluminescence Properties of Er3+/Yb3+ Doped ZrO2 Coatings Formed by Plasma Electrolytic Oxidation. J. Lumin. 2019, 208, 296–301. [Google Scholar] [CrossRef]
- Stojadinović, S.; Tadić, N.; Vasilić, R. Down- and up-Conversion Photoluminescence of ZrO2:Ho3+ and ZrO2:Ho3+/Yb3+ Coatings Formed by Plasma Electrolytic Oxidation. J. Alloy. Compd. 2019, 785, 1222–1232. [Google Scholar] [CrossRef]
- Stojadinović, S.; Tadić, N.; Vasilić, R. Down-Conversion Photoluminescence of ZrO2:Er3+ Coatings Formed by Plasma Electrolytic Oxidation. Mater. Lett. 2018, 219, 251–255. [Google Scholar] [CrossRef]
- Stojadinović, S.; Tadić, N.; Vasilić, R. Structural and Photoluminescent Properties of ZrO2:Tb3+ Coatings Formed by Plasma Electrolytic Oxidation. J. Lumin. 2018, 197, 83–89. [Google Scholar] [CrossRef]
- Stojadinović, S.; Tadić, N.; Vasilić, R. Photoluminescence of Sm3+ Doped ZrO2 Coatings Formed by Plasma Electrolytic Oxidation of Zirconium. Mater. Lett. 2016, 164, 329–332. [Google Scholar] [CrossRef]
- Stojadinović, S.; Vasilić, R.; Radić, N.; Grbić, B. Zirconia Films Formed by Plasma Electrolytic Oxidation: Photoluminescent and Photocatalytic Properties. Opt. Mater. 2015, 40, 20–25. [Google Scholar] [CrossRef]
- Cao, H.; Qiu, X.; Luo, B.; Liang, Y.; Zhang, Y.; Tan, R.; Zhao, M.; Zhu, Q. Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires. Adv. Funct. Mater. 2004, 14, 243–246. [Google Scholar] [CrossRef]
- Cong, Y.; Li, B.; Yue, S.; Fan, D.; Wang, X.J. Effect of Oxygen Vacancy on Phase Transition and Photoluminescence Properties of Nanocrystalline Zirconia Synthesized by the One Pot Reaction. J. Phys. Chem. C 2009, 113, 13974–13978. [Google Scholar] [CrossRef]
- Kumari, L.; Li, W.Z.; Xu, J.M.; Leblanc, R.M.; Wang, D.Z.; Li, Y.; Guo, H.; Zhang, J. Controlled Hydrothermal Synthesis of Zirconium Oxide Nanostructures and Their Optical Properties. Cryst. Growth Des. 2009, 9, 3874–3880. [Google Scholar] [CrossRef]
- Jain, N.; Singh, R.K.; Sinha, S.; Singh, R.A.; Singh, J. Color Tunable Emission through Energy Transfer from Yb3+ Co-Doped SrSnO3:Ho3+ Perovskite Nano-Phosphor. Appl. Nanosci. 2018, 8, 1267–1278. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attarzadeh, N.; Ramana, C.V. Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications. Coatings 2021, 11, 620. https://doi.org/10.3390/coatings11060620
Attarzadeh N, Ramana CV. Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications. Coatings. 2021; 11(6):620. https://doi.org/10.3390/coatings11060620
Chicago/Turabian StyleAttarzadeh, Navid, and C. V. Ramana. 2021. "Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications" Coatings 11, no. 6: 620. https://doi.org/10.3390/coatings11060620
APA StyleAttarzadeh, N., & Ramana, C. V. (2021). Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications. Coatings, 11(6), 620. https://doi.org/10.3390/coatings11060620