# Formation of Millimeter Waves with Electrically Tunable Orbital Angular Momentum

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Part

## 3. Experimental Part

#### 3.1. Prototype Description

#### 3.2. Calculation and Simulation

#### 3.3. Experimental Results

## 4. Discussion and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Lee, D.; Sasaki, H.; Fukumoto, H.; Yagi, Y.; Shimizu, T. An evaluation of orbital angular momentum multiplexing technology. Appl. Sci.
**2019**, 9, 1729. [Google Scholar] [CrossRef] [Green Version] - Hu, T.; Wang, Y.; Liao, X.; Zhang, J.; Song, Q. OFDM-OAM modulation for future wireless communications. IEEE Access
**2019**, 7, 59114–59125. [Google Scholar] [CrossRef] - Chen, X.; Xue, W.; Shi, H.; Yi, J.; Wei, E.I. Orbital angular momentum multiplexing in highly reverberant environments. IEEE Microw. Wirel. Compon. Lett.
**2019**, 30, 112–115. [Google Scholar] [CrossRef] [Green Version] - Cheng, L.; Hong, W.; Hao, Z.C. Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Sci. Rep.
**2014**, 4, 4814. [Google Scholar] [CrossRef] - Allen, B.; Pelham, T.; Wu, Y.; Drysdale, T.; Isakov, D.; Gamlath, C.; Stevens, C.J.; Hilton, G.; Beach, M.A.; Grant, P.S. Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system. R. Soc. Open Sci.
**2019**, 6, 191419. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tamburini, F.; Mari, E.; Thidé, B.; Barbieri, C.; Romanato, F. Experimental verification of photon angular momentum and vorticity with radio techniques. Appl. Phys. Lett.
**2011**, 99, 204102. [Google Scholar] [CrossRef] - Tamburini, F.; Mari, E.; Sponselli, A.; Thidé, B.; Bianchini, A.; Romanato, F. Encoding many channels on the same frequency through radio vorticity: First experimental test. New J. Phys.
**2012**, 14, 033001. [Google Scholar] [CrossRef] - Shi, H.; Wang, L.; Peng, G.; Chen, X.; Li, J.; Zhu, S.; Zhang, A.; Xu, Z. Generation of multiple modes microwave vortex beams using active metasurface. IEEE Antennas Wirel. Propag. Lett.
**2018**, 18, 59–63. [Google Scholar] [CrossRef] - Ji, C.; Song, J.; Huang, C.; Wu, X.; Luo, X. Dual-band vortex beam generation with different OAM modes using single-layer metasurface. Opt. Express
**2019**, 27, 34–44. [Google Scholar] [CrossRef] [PubMed] - Yu, S.; Li, L.; Shi, G.; Zhu, C.; Zhou, X.; Shi, Y. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett.
**2016**, 108, 121903. [Google Scholar] [CrossRef] - Chen, M.L.; Jiang, L.J.; Sha, W.E. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency. J. Appl. Phys.
**2016**, 119, 064506. [Google Scholar] [CrossRef] [Green Version] - Yang, T.; Yang, D.; Wang, B.; Hu, J. Experimentally Validated, Wideband, Compact, OAM Antennas Based on Circular Vivaldi Antenna Array. Prog. Electromagn. Res.
**2018**, 80, 211–219. [Google Scholar] [CrossRef] [Green Version] - Qin, F.; Li, L.; Liu, Y.; Cheng, W.; Zhang, H. A four-mode OAM antenna array with equal divergence angle. IEEE Antennas Wirel. Propag. Lett.
**2019**, 18, 1941–1945. [Google Scholar] [CrossRef] - Deng, C.; Chen, W.; Zhang, Z.; Li, Y.; Feng, Z. Generation of OAM radio waves using circular Vivaldi antenna array. Int. J. Antennas Propag.
**2013**, 2013, 607–610. [Google Scholar] [CrossRef] [Green Version] - Yan, Y.; Xie, G.; Lavery, M.P.; Huang, H.; Ahmed, N.; Bao, C.; Ren, Y.; Cao, Y.; Li, L.; Zhao, Z.; et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun.
**2014**, 5, 4876. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mohammadi, S.M.; Daldorff, L.K.; Forozesh, K.; Thidé, B.; Bergman, J.E.; Isham, B.; Karlsson, R.; Carozzi, T.D. Orbital angular momentum in radio: Measurement methods. Radio Sci.
**2010**, 45. [Google Scholar] [CrossRef] - Zhang, K.; Wang, Y.; Yuan, Y.; Burokur, S.N. A review of orbital angular momentum vortex beams generation: From traditional methods to metasurfaces. Appl. Sci.
**2020**, 10, 1015. [Google Scholar] [CrossRef] [Green Version] - Vasnetsov, M.V.; Torres, J.P.; Petrov, D.V.; Torner, L. Observation of the orbital angular momentum spectrum of a light beam. Opt. Lett.
**2003**, 28, 2285–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nenasheva, E.A.; Kartenko, N.F.; Gaidamaka, I.M.; Trubitsyna, O.N.; Redozubov, S.S.; Dedyk, A.I. and Kanareykin, A.D. Low loss microwave ferroelectric ceramics for high power tunable devices. J. Eur. Ceram. Soc.
**2010**, 30, 395–400. [Google Scholar] [CrossRef] - Thidé, B.; Then, H.; Sjöholm, J.; Palmer, K.; Bergman, J.; Carozzi, T.D.; Istomin, Y.N.; Ibragimov, N.H.; Khamitova, R. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett.
**2007**, 99, 087701. [Google Scholar] [CrossRef] [Green Version] - Mohammadi, S.M.; Daldorff, L.K.; Bergman, J.E.; Karlsson, R.L.; Thidé, B.; Forozesh, K.; Carozzi, T.D.; Isham, B. Orbital angular momentum in radio—A system study. IEEE Trans. Antennas Propag.
**2009**, 58, 565–572. [Google Scholar] [CrossRef] - Stutzman, W.; Thiele, G. Antenna Theory and Design, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Balanis, C. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Shen, F.; Wang, A. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Appl. Opt.
**2006**, 45, 1102–1110. [Google Scholar] [CrossRef] [PubMed] - Minami, T. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films
**2008**, 516, 5822–5828. [Google Scholar] [CrossRef] - Ptashnik, S.V.; Mikhailov, A.K.; Yastrebov, A.V.; Petrov, P.K.; Liu, W.; Alford, N.M.; Hirsch, S.; Kozyrev, A.B. Ferroelectric thin film acoustic devices with electrical multiband switching ability. Sci. Rep.
**2017**, 7, 15289. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**The incident plane wave transformation into OAM carrying wave by the proposed ferroelectric lens.

**Figure 2.**Phase-front distributions and radiation patterns of different OAM modes l = +1 (

**a**,

**b**); l = +2 (

**c**,

**d**); l = +3 (

**e**,

**f**) formed by lens with N = 8.

**Figure 3.**Exploded-view—(

**a**) and photo (matching layer removed)—(

**b**) of tunable ferroelectric lens prototype.

**Figure 4.**Comparison of the simulated and measured beam of a horn with mode with l = 0 (

**a**); comparison of the simulated and measured beam of mode with l = +1 (

**b**).

**Figure 5.**Measured amplitude distribution—(

**a**) and phase-front—(

**b**) of the OAM wave with l = +1 formed by prototype.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Altynnikov, A.; Platonov, R.; Tumarkin, A.; Petrov, P.K.; Kozyrev, A.
Formation of Millimeter Waves with Electrically Tunable Orbital Angular Momentum. *Coatings* **2021**, *11*, 569.
https://doi.org/10.3390/coatings11050569

**AMA Style**

Altynnikov A, Platonov R, Tumarkin A, Petrov PK, Kozyrev A.
Formation of Millimeter Waves with Electrically Tunable Orbital Angular Momentum. *Coatings*. 2021; 11(5):569.
https://doi.org/10.3390/coatings11050569

**Chicago/Turabian Style**

Altynnikov, Andrey, Roman Platonov, Andrey Tumarkin, Peter K. Petrov, and Andrey Kozyrev.
2021. "Formation of Millimeter Waves with Electrically Tunable Orbital Angular Momentum" *Coatings* 11, no. 5: 569.
https://doi.org/10.3390/coatings11050569