Potential Use of the Pigments from Scytalidium cuboideum and Chlorociboria aeruginosa to Prevent ‘Greying’ Decking and Other Outdoor Wood Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood
2.2. Fungal Pigments
2.3. Coating Preparation
2.3.1. Linseed oil with Fungal Pigments
2.3.2. Aniline
2.4. Coating Application
2.4.1. Linseed oil with Fungal Pigments
2.4.2. Aniline Application
2.4.3. Linseed Oil
2.5. Weathering
2.6. Color and Area Evaluation
2.7. Statistical Evaluation
3. Results and Discussion
3.1. Color Change
3.2. Color Coverage
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zabel, R.A.; Morrell, J.J. Wood Microbiology. Decay and Its Prevention; Harcourt Brace Jovanovich, Academic Press, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Hon, D.N.S.; Chang, S.T. Surface degradation of wood by ultraviolet light. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2227–2241. [Google Scholar] [CrossRef]
- Zayat, M.; Garcia-Parejo, P.; Levy, D. Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chem. Soc. Rev. 2007, 36, 1270–1281. [Google Scholar] [CrossRef]
- George, B.; Suttie, E.; Merlin, A.; Deglise, X. Photodegradation and photostabilisation of wood–the state of the art. Polym. Degrad. Stab. 2005, 88, 268–274. [Google Scholar] [CrossRef]
- Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers. Appl. Surf. Sci. 2007, 253, 3737–3745. [Google Scholar] [CrossRef]
- Zuin, S.; Gaiani, M.; Ferrari, A.; Golanski, L. Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. J. Nanoparticle Res. 2014, 16, 1–17. [Google Scholar] [CrossRef]
- Jovanović, B.; Guzmán, H.M. Effects of titanium dioxide (TiO2) nanoparticles on caribbean reef-building coral (Montastraea faveolata). Environ. Toxicol. Chem. 2014, 33, 1346–1353. [Google Scholar] [CrossRef]
- Robinson, S.C.; Richter, D.L.; Laks, P.E. Colonization of sugar maple by spalting fungi. For. Prod. J. 2007, 57, 24–32. [Google Scholar]
- Coates, D. The Biological Consequences of Somatic Incompatibility in Wood Decaying Basidiomycetes and Other Fungi; University of Bath: Bath, UK, 1984. [Google Scholar]
- Lopez-Real, J.M.; Swift, M.J. The formation of pseudosclerotia (‘zone lines’) in wood decayed by armillaria mellea and stereum hirsutum. II. Formation in relation to the moisture content of the wood. Trans. Br. Mycol. Soc. 1975, 64, 473–481. [Google Scholar] [CrossRef]
- Wheeler, M.H. Comparisons of fungal melanin biosynthesis in ascomycetous, imperfect and basidiomycetous fungi. Trans. Br. Mycol. Soc. 1983, 81, 29–36. [Google Scholar] [CrossRef]
- Hedgcock, G.G. Studies upon some chromogenic fungi which discolor wood. Mo. Bot. Gard. Annu. Rep. 1906, 1906, 59–114. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.C.; Richter, D.L.; Laks, P.E. Inducing and Stimulating Spalting in Sugar Maple; International Research Group on Wood Protection: Stockholm, Sweden, 2008; IRG 08-10652. [Google Scholar]
- Blanchette, R.A.; Wilmering, A.M.; Baumeister, M. The use of green-stained wood caused by the fungus Chlorociboria in Intarsia masterpieces from the 15th century. Holzforschung 1992, 46, 225–232. [Google Scholar] [CrossRef]
- Maeda, M.; Yamauchi, T.; Oshima, K.; Shimomura, M.; Miyauchi, S.; Mukae, K.; Sakaki, T.; Shibata, M.; Wakamatsu, K. Extraction of xylindein from Chlorociboria aeruginosa complex and its biological characteristics. Bull. Nagaoka Univ. Technol. 2003, 25, 105–111. [Google Scholar]
- Kang, H.; Sigler, L.; Lee, J.; Gibas, C.; Yun, S.; Lee, Y. Xylogone ganodermophthora sp. nov., an ascomycetous pathogen causing yellow rot on cultivated mushroom Ganoderma lucidum in Korea. Mycologia 2010, 102, 1167–1184. [Google Scholar] [CrossRef] [Green Version]
- Golinski, P.; Krick, T.P.; Blanchette, R.A.; Mirocha, C.J. Chemical characterization of a red pigment (5, 8-dihydroxy-2, 7-dimethoxy-1, 4-naphthalenedione) produced by Arthrographis cuboidea in pink stained wood. Holzforsch. Int. J. Biol. Chem. Phys. Technol. Wood 1995, 49, 407–410. [Google Scholar]
- Michaelsen, H.; Unger, A.; Fischer, C.-H. Blaugrüne Färbung an Intarsienhölzern des 16. bis 18. Jahrhunderts. Restauro 1992, 98, 17–25. [Google Scholar]
- Otterstedt, A. Investigating green Marquetry on bowed-string instruments. The leaves be greene. Galpin Soc. J. 2001, 54, 330. [Google Scholar] [CrossRef]
- Beck, H.G.; Freitas, S.; Weber, G.; Robinson, S.C.; Morrell, J.J. Resistance of fungal derived pigments to ultraviolet light exposure. In Proceedings of the International Research Group Conference in Wood Protection, St George, UT, USA, 11–15 May 2014. [Google Scholar]
- Hinsch, E.M.; Weber, G.; Chen, H.-L.; Robinson, S.C. Colorfastness of Extracted Wood-staining Fungal Pigments on Fabrics: A new potential for textile dyes. J. Text. Appar. Technol. Manag. 2015, 9, 1–11. [Google Scholar]
- Giesbers, G.; Van Schenck, J.; Vega Gutierrez, S.; Robinson, S.; Ostroverkhova, O. Fungi-Derived Pigments for Sustainable Organic (Opto) Electronics. MRS Adv. 2018, 1–6, 2059–8521. [Google Scholar] [CrossRef] [Green Version]
- Vega Gutierrez, S.M.; Hazell, K.K.; Simonsen, J.; Robinson, S.C. Description of a Naphthoquinonic Crystal Produced by the Fungus Scytalidium cuboideum. Molecules 2018, 23, 1905. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.C.; Weber, G.; Hinsch, E.; Vega Gutierrez, S.M.; Pittis, L.; Freitas, S. Utilizing Extracted Fungal Pigments for Wood Spalting: A Comparison of Induced Fungal Pigmentation to Fungal Dyeing. J. Coat. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Weber, G.; Chen, H.-L.; Hinsch, E.; Freitas, S.; Robinson, S. Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes. Coloration Technol. 2014, 130, 445–452. [Google Scholar] [CrossRef]
- Hinsch, E.M.; Robinson, S.C. Mechanical Color Reading of Wood-Staining Fungal Pigment Textile Dyes: An Alternative Method for Determining Colorfastness. Coatings 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Almurshidi, B.H.; Van Court, R.C.; Vega Gutierrez, S.M.; Harper, S.; Harper, B.; Robinson, S.C. Preliminary Examination of the Toxicity of Spalting Fungal Pigments: A Comparison between Extraction Methods. J. Fungi 2021, 7, 155. [Google Scholar] [CrossRef]
- Knörr, W.; Daute, P.; Grützmacher, R.; Höfer, R. Development of new fields of application for linseed oil. Lipid Fett 1995, 97, 165–169. [Google Scholar] [CrossRef]
- Derrick, M. Fourier transform infrared spectral analysis of natural resins used in furniture finishes. J. Am. Inst. Conserv. 1989, 28, 43–56. [Google Scholar] [CrossRef]
- Chiavari, G.; Galletti, G.C.; Lanterna, G.; Mazzeo, R. The potential of pyrolysis—gas chromatography/mass spectrometry in the recognition of ancient painting media. J. Anal. Appl. Pyrolysis 1993, 24, 227–242. [Google Scholar] [CrossRef]
- Schuerman, G.; Bruzan, R. Chemistry of paint. J. Chem. Educ. 1989, 66, 327. [Google Scholar] [CrossRef]
- Derksen, J.T.P.; Cuperus, F.P.; Kolster, P. Paints and coatings from renewable resources. Ind. Crop. Prod. 1995, 3, 225–236. [Google Scholar] [CrossRef]
- Robinson, S.C.; Gutierrez, S.M.V.; Garcia, R.A.C.; Iroume, N.; Vorland, N.R.; McClelland, A.; Huber, M.; Stanton, S. Potential for carrying dyes derived from spalting fungi in natural oils. J. Coat. Technol. Res. 2017, 14, 1107–1113. [Google Scholar] [CrossRef]
- Agurto, M.E.P.; Gutierrez, S.M.V.; Chen, H.-L.; Robinson, S.C. Wood-Rotting Fungal Pigments as Colorant Coatings on Oil-Based Textile Dyes. Coatings 2017, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Ozgenc, O.; Hiziroglu, S.; Yildiz, U.C. Weathering properties of wood species treated with different coating applications. BioResources 2012, 7, 4875–4888. [Google Scholar] [CrossRef]
- Yang, X.F.; Tallman, D.E.; Bierwagen, G.P.; Croll, S.G.; Rohlik, S. Blistering and degradation of polyurethane coatings under different accelerated weathering tests. Polym. Degrad. Stab. 2002, 77, 103–109. [Google Scholar] [CrossRef]
- Robinson, S.C.; Richter, D.L.; Laks, P.E. Effects of substrate on laboratory spalting of sugar maple. Holzforschung 2009, 63, 491–495. [Google Scholar] [CrossRef]
- Vega Gutierrez, S.; Van Court, R.C.; Stone, D.; Konkler, M.; Groth, E.; Robinson, S. Relationship between Molarity and Color in the Crystal (‘Dramada’) Produced by Scytalidium cuboideum, in Two Solvents. Molecules 2018, 23, 2581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.C.; Laks, P.E.; Turnquist, E.J. A Method for Digital Color Analysis of Spalted Wood Using Scion Image Software. Materials 2009, 2, 62–75. [Google Scholar] [CrossRef]
- Schaller, C.; Rogez, D. New approaches in wood coating stabilization. J. Coat. Technol. Res. 2007, 4, 401–409. [Google Scholar] [CrossRef]
- Pittis, L.; de Oliveira, D.R.; Gutierrez, S.M.V.; Robinson, S.C. Alternative Carrier Solvents for Pigments Extracted from Spalting Fungi. Materials 2018, 11, 897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Wood | Treatment (Coating Type) | Color | Weathering (h) | Mean (∆E) |
---|---|---|---|---|
White pine | Control | No color | 500 | 8.878 (EF) |
1000 | 12.123 (DEF) | |||
Linseed oil | No color | 500 | 5.260 (F) | |
1000 | 8.685 (EF) | |||
Linseed oil + aniline | Red | 500 | 36.608 (A) | |
1000 | 19.340 (BCDE) | |||
Green | 500 | 28.705 (ABC) | ||
1000 | 28.910 (AB) | |||
Linseed oil + fungal pigment | Red | 500 | 9.783 (EF) | |
1000 | 4.293 (F) | |||
Green | 500 | 8.603 (EF) | ||
1000 | 8.598 (EF) | |||
Douglas-fir | Control | No color | 500 | 11.584 (EF) |
1000 | 11.294 (EF) | |||
Linseed oil | No color | 500 | 9.408 (EF) | |
1000 | 7.330 (EF) | |||
Linseed oil + aniline | Red | 500 | 24.598 (ABCD) | |
1000 | 24.610 (ABCD) | |||
Green | 500 | 32.188 (A) | ||
1000 | 29.418 (AB) | |||
Linseed oil + fungal pigment | Red | 500 | 16.085 (CDEF) | |
1000 | 12.890 (CDEF) | |||
Green | 500 | 8.363 (EF) | ||
1000 | 7.313 (EF) |
Treatment (Coating Type) | Color | Weathering (h) | Mean (a%) |
---|---|---|---|
Linseed oil | No color | 500 | 51.916 (BC) |
1000 | 43.557 (C) | ||
Linseed oil + aniline | Red | 500 | 15.145 (D) |
1000 | 22.578 (D) | ||
Green | 500 | 6.208 (D) | |
1000 | 7.710 (D) | ||
Linseed oil + fungal pigment | Red | 500 | 82.130 (A) |
1000 | 59.804 (BC) | ||
Green | 500 | 63.421 (AB) | |
1000 | 48.221(BC) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega Gutierrez, S.M.; Stone, D.W.; He, R.; Vega Gutierrez, P.T.; Walsh, Z.M.; Robinson, S.C. Potential Use of the Pigments from Scytalidium cuboideum and Chlorociboria aeruginosa to Prevent ‘Greying’ Decking and Other Outdoor Wood Products. Coatings 2021, 11, 511. https://doi.org/10.3390/coatings11050511
Vega Gutierrez SM, Stone DW, He R, Vega Gutierrez PT, Walsh ZM, Robinson SC. Potential Use of the Pigments from Scytalidium cuboideum and Chlorociboria aeruginosa to Prevent ‘Greying’ Decking and Other Outdoor Wood Products. Coatings. 2021; 11(5):511. https://doi.org/10.3390/coatings11050511
Chicago/Turabian StyleVega Gutierrez, Sarath M., Derek W. Stone, Rui He, Patricia T. Vega Gutierrez, Zielle M. Walsh, and Seri C. Robinson. 2021. "Potential Use of the Pigments from Scytalidium cuboideum and Chlorociboria aeruginosa to Prevent ‘Greying’ Decking and Other Outdoor Wood Products" Coatings 11, no. 5: 511. https://doi.org/10.3390/coatings11050511