Microstructure of Aluminide Coatings Modified by Pt, Pd, Zr and Hf Formed in Low-Activity CVD Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Simple Pt-Al Aluminide Coating (1)
3.2. The Simple Pd-Al Coating (2)
3.3. The (Pt + Pd)-Al Coating (3)
3.4. The (Pd + Zr)-Al Coating (4)
3.5. The (Pd + Hf)-Al Coating (5)
3.6. The (Pt + Pd + Zr)-Al Coating (6)
3.7. The (Pt + Pd + Hf)-Al Coating (7)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yu, C.; Yang, Y.; Bao, Z.; Zhu, S. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings. J. Chin. Soc. Corros. Prot. 2019, 39, 395–403. [Google Scholar] [CrossRef]
- Swadzba, R. Interfacial phenomena and evolution of modified aluminide bondcoatings in Thermal Barrier Coatings. Appl. Surf. Sci. 2018, 445, 133–144. [Google Scholar] [CrossRef]
- Pauletti, E.; D’Oliveira, A.S.C.M. Study on the mechanisms of formation of aluminized diffusion coatings on a Ni-base superalloy using different pack aluminization procedures. J. Vac. Sci. Technol. A Vac. Surf. Film. 2018, 36, 041504. [Google Scholar] [CrossRef]
- Rannou, B.; Bouchaud, B.; Balmain, J.; Bonnet, G.; Pedraza, F. Comparative isothermal oxidation behaviour of new aluminide coatings from slurries containing Al particles and conventional out-of-pack aluminide coatings. Oxid. Met. 2014, 81, 139–149. [Google Scholar] [CrossRef]
- Kopec, M.; Kukla, D.; Yuan, X.; Rejmer, W.; Kowalewski, Z.L.; Senderowski, C. Aluminide thermal barrier coating for high temperature performance of MAR 247 nickel based superoy. Coatings 2021, 11, 48. [Google Scholar] [CrossRef]
- Góral, M.; Sieniawski, J.; Kotowski, S.; Pytel, M.; Masłyk, M. Influence of turbine blade geometry on thickness of TBCs deposited by VPA and PS-PVD methods. Arch. Mater. Sci. Eng. 2012, 54, 22–28. [Google Scholar]
- Squillace, A.; Bonetti, R.; Archer, N.J.; Yeatman, J.A. The control of the composition and structure of aluminide layers formed by vapour aluminizing. Surf. Coat. Technol. 1999, 120–121, 118–123. [Google Scholar] [CrossRef]
- Adamiak, S.; Bochnowski, W.; Dziedzic, A.; Filip, R.; Szeregij, E. Structure and Properties of the Aluminide Coatings on the Inconel 625 Superalloy. High Temp. Mater. Process. 2016, 35, 103–112. [Google Scholar] [CrossRef]
- Warnes, B.M.; Punola, D.C. Clean diffusion coatings by chemical vapor deposition. Surf. Coat. Technol. 1997, 94–95. [Google Scholar] [CrossRef]
- Swadzba, L.; Nawrat, G.; Mendala, B.; Goral, M. The influence of deposition process on structure of platinum-modifed aluminide coatings o Ni-base superalloy. Key Eng. Mater. 2011, 465, 247–250. [Google Scholar] [CrossRef]
- Purvis, A.L.; Warnes, B.M. The effects of platinum concentration on the oxidation resistance of superalloys coated with wingle-phase platinum aluminide. Surf. Coat. Technol. 2001, 146–147, 1–6. [Google Scholar] [CrossRef]
- Angenete, J.; Stiller, K. Comparison of inward and outward grown Pt modified aluminide diffusion coatings on a Ni based single crystal superalloy. Surf. Coat. Technol. 2002, 150, 107–118. [Google Scholar] [CrossRef]
- Li, M.J.; Sun, X.F.; Guan, H.R.; Jiang, X.X.; Hu, Z.Q. Oxidation kinetics and scale morphology of a palladium-modified-aluminide coating at high temperature in air. Oxid. Met. 2004, 61, 91–104. [Google Scholar] [CrossRef]
- Li, M.J.; Sun, X.F.; Guan, H.R.; Jiang, X.X.; Hu, Z.Q. The degradation of (Ni,Pd)Al coatings on superalloy IN738 during isothermal oxidation. Surf. Coat. Technol. 2004, 185, 172–177. [Google Scholar] [CrossRef]
- Hong, S.-J.; Hwang, G.-H.; Han, W.-K.; Kang, S.-G. Effect of Pd and Ru on the structural and mechanical properties of a Pt-modified aluminide coating. J. Korean Phys. Soc. 2009, 54, 1191–1197. [Google Scholar] [CrossRef]
- Swadzba, R.; Hetmanczyk, M.; Sozanska, M.; Witala, B.; Swadzba, L. Structure and cyclic oxidation resistance of Pt, Pt/Pd-modified and simple aluminide coatings on CMSX-4 superalloy. Surf. Coat. Technol. 2011, 206, 1538–1544. [Google Scholar] [CrossRef]
- Zagula-Yavorska, M.; Sieniawski, J.; Gancarczyk, T. Some properties of platinum and palladium modified aluminide coatings deposited by CVD method on nickel-base superalloys. Arch. Metall. Mater. 2012, 57, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Pytel, M.; Tokarski, M.; Goral, M.; Filip, R. Structure of Pd-Zr and Pt-Zr modified aluminide coatings deposited by a CVD method on nickel superalloys. Kov. Mater. 2019, 57, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Haynes, J.; Wright, G.; Pint, B.A.; Cooley, K.M.; Lee, W.Y.; Liaw, P.K. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2001, 32, 1727–1741. [Google Scholar] [CrossRef]
- Tawancy, H.M.; Sridhar, N.; Abbas, N.M.; Rickerby, D. Comparative thermal stability characteristics and isothermal oxidation behavior of an aluminized and a Pt-aluminized Ni-base superalloy. Scr. Metall. Mater. 1995, 33, 1431–1438. [Google Scholar] [CrossRef]
- Angenete, J.; Stiller, K. A comparative study of two inward grown Pt modified Al diffusion coatings on a single crystal Ni base superalloy. Mat. Sci. Eng. A 2001, 316, 182–194. [Google Scholar] [CrossRef]
- Li, M.J.; Sun, X.F.; Guan, H.R.; Jiang, X.X.; Hu, Z.Q. Cyclic oxidation behavior of palladium-modified aluminide coating. Surf. Coat. Technol. 2003, 167, 106–111. [Google Scholar] [CrossRef]
- Hong, S.J.; Hwang, G.H.; Han, W.K.; Kang, S.G. Cyclic oxidation of Pt/Pd-modified aluminide coating on a nickel-based superalloy at 1150 °C. Intermetallics 2009, 17, 381–386. [Google Scholar] [CrossRef]
- Pint, B.A. The role of chemical composition on the oxidation performance of aluminide coatings. Surf. Coat. Technol. 2004, 188–189, 71–78. [Google Scholar]
- Jiang, C.; Li, S.; Liu, H.; Bao, Z.; Zhang, J.; Zhu, S.; Wang, F. Effect of Hf addition in (Ni,Pt)Al bond coat on thermal cycling behavior of a thermal barrier coating system at 1100 °C. Corr. Sci. 2020, 166, 108424. [Google Scholar] [CrossRef]
- Jiang, C.; Qian, L.; Feng, M.; Liu, H.; Bao, Z.; Chen, M.; Zhu, S.; Wang, F. Benefits of Zr addition to oxidation resistance of a single-phase (Ni, Pt) Al coating at 1373 K. J. Mater. Sci. Technol. 2019, 35, 1334–1344. [Google Scholar] [CrossRef]
- Filip, R.; Nowotnik, A.; Goral, M. Zirconia modified aluminide coatings deposited by VPA and CVD methods. Solid State Phenom. 2013, 203–204, 220–223. [Google Scholar] [CrossRef]
- Zagula-Yavorska, M.; Morgiel, J.; Romanowska, J.; Sieniawski, J. Nanoparticles in zirconium-doped aluminide coatings. Mater. Lett. 2015, 139, 50–54. [Google Scholar] [CrossRef]
- Filip, R.; Góral, M.; Zawadzki, M.; Nowotnik, A.; Pytel, M. The influence of long-term heat treatment on microstructure of Zr-modified aluminide coating deposited by CVD method on MAR M200+Hf nickel superalloy. Key Eng. Mater. 2014, 592–593, 469–472. [Google Scholar] [CrossRef]
- Romanowska, J.; Morgiel, J.; Kolek, Ł.; Kwolek, P.; Zagula-Yavorska, M. Effect of Pd and Hf co-doping of aluminide coatings on pure nickel and CMSX-4 nickel superalloy. Arch. Civ. Mech. Eng. 2018, 18, 1421–1429. [Google Scholar] [CrossRef]
Element Content (wt.%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Cr | Co | W | Mo | Ta | Al | Ti | Hf | B | Zr | Ni |
0.15 | 8.4 | 10.0 | 10.0 | 0.7 | 3.0 | 5.5 | 1.0 | 1.5 | 0.015 | 0.05 | Bal. |
Area | Chemical Composition (wt.%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ti | Cr | Fe | Co | Ni | Zr | Mo | Hf | W | Pt | |
1 | 24.1 | 0.0 | 1.3 | 1.0 | 6.2 | 55.4 | - | 0.6 | 0.3 | 0.5 | 10.6 |
2 | 18.7 | 0.5 | 4.2 | 0.6 | 6.8 | 50.0 | - | 0.7 | 0.3 | 0.8 | 17.5 |
3 | 16.8 | 0.8 | 5.2 | 0.6 | 7.0 | 47.7 | - | 0.6 | 2.9 | 1.1 | 17.2 |
4 | 19.0 | 0.4 | 3.9 | 0.7 | 6.8 | 51.5 | - | 0.5 | 0.2 | 1.2 | 15.8 |
5 | 12.7 | 1.2 | 8.7 | 0.4 | 8.4 | 42.6 | - | 1.2 | 1.9 | 10.0 | 12.9 |
6 | 5.6 | 0.9 | 9.4 | - | 10.9 | 62.0 | 0.1 | 0.7 | 0.6 | 9.9 | - |
Area | Element Amount (wt.%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ti | Cr | Mn | Fe | Co | Ni | Zr | Mo | Pd | Hf | Ta | W | |
1 | 20.6 | 0.0 | 1.5 | 0.1 | 1.0 | 4.9 | 47.0 | 0.0 | - | 24.2 | 0.1 | - | 0.5 |
2 | 19.4 | 0.2 | 2.9 | - | 0.6 | 5.6 | 46.6 | 0.1 | - | 23.8 | 0.1 | - | 0.6 |
3 | 18.3 | 0.5 | 4.4 | - | 0.6 | 6.7 | 50.2 | 0.0 | - | 17.5 | 0.8 | - | 1.0 |
4 | 20.1 | 0.2 | 2.6 | - | 0.7 | 5.4 | 46.4 | 0.1 | - | 24.0 | 0.0 | - | 0.4 |
5 | 15.2 | 0.7 | 6.7 | - | 0.4 | 7.6 | 44.7 | 0.2 | - | 13.3 | 2.3 | 0.8 | 8.1 |
6 | 11.1 | 1.0 | 8.1 | - | 0.4 | 8.8 | 39.5 | 0.1 | 1.1 | 7.6 | 2.4 | 3.0 | 16.8 |
Area | Chemical Composition (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Al | Ti | Cr | Fe | Co | Ni | Mo | Pd | W | Pt | |
1 | 21.4 | - | 0.9 | 1.0 | 4.5 | 38.9 | - | 22.7 | - | 10.6 |
2 | 18.3 | - | 2.4 | 0.5 | 4.5 | 35.7 | - | 23.2 | - | 15.4 |
3 | 17.1 | 0.3 | 2.9 | - | 4.7 | 36.3 | - | 20.2 | - | 18.4 |
4 | 16.6 | 0.8 | 3.7 | 0.4 | 5.3 | 40.3 | 1.1 | 17.4 | - | 14.4 |
5 | 10.9 | 1.2 | 8.7 | - | 8.1 | 35.3 | 1.5 | 8.7 | 12.0 | 13.6 |
Area | Chemical Composition (wt.%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ti | Cr | Fe | Co | Ni | Zr | Mo | Pd | Hf | Ta | W | |
1 | 25.8 | 0.0 | 0.7 | 0.8 | 5.1 | 50.6 | 0.2 | 0.3 | 16.1 | - | - | 0.3 |
2 | 21.0 | 0.3 | 3.0 | 0.6 | 5.9 | 49.9 | 0.1 | 0.1 | 18.6 | - | - | 0.5 |
3 | 19.0 | 0.6 | 4.4 | 0.4 | 7.2 | 52.9 | 0.1 | 0.1 | 14.4 | - | - | 0.9 |
4 | 21.2 | 0.3 | 2.9 | 0.6 | 6.1 | 50.8 | 0.2 | 0.0 | 17.4 | - | - | 0.6 |
5 | 11.4 | 1.1 | 9.0 | 0.5 | 8.5 | 39.5 | 0.5 | 1.1 | 6.6 | 4.8 | 3.4 | 13.6 |
Area | Elements Amount (wt.%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ti | Cr | Fe | Co | Ni | Zr | Mo | Pd | Hf | Ta | W | |
1 | 22.8 | 0.1 | 0.8 | 1.2 | 4.5 | 47.0 | 0.1 | - | 22.8 | 0.3 | - | 0.4 |
2 | 20.1 | 0.2 | 2.0 | 1.0 | 5.1 | 45.0 | 0.1 | - | 25.4 | 0.3 | 0.4 | 0.5 |
3 | 18.7 | 0.6 | 3.3 | 1.0 | 6.7 | 49.6 | 0.1 | - | 19.0 | 0.3 | - | 0.6 |
4 | 20.3 | 0.2 | 1.8 | 1.1 | 5.1 | 45.8 | 0.2 | - | 24.8 | 0.1 | - | 0.5 |
5 | 12.2 | 1.0 | 6.2 | 1.1 | 8.1 | 40.5 | 0.0 | 1.0 | 9.9 | 2.3 | 4.3 | 13.3 |
Area | Chemical Composition (wt.%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ti | Cr | Fe | Co | Ni | Zr | Mo | Pd | Hf | W | Pt | |
1 | 22.8 | 0.0 | 0.8 | 0.7 | 4.7 | 45.8 | - | - | 17.9 | 0.4 | 0.6 | 6.3 |
2 | 17.9 | 0.3 | 3.0 | 0.4 | 4.7 | 39.4 | - | 0.5 | 19.2 | 0.5 | 0.8 | 13.3 |
3 | 16.6 | 0.8 | 4.5 | 0.3 | 5.8 | 42.8 | 0.1 | 0.4 | 13.7 | 1.2 | 1.0 | 12.8 |
4 | 18.7 | 0.4 | 2.9 | 0.4 | 4.8 | 40.9 | 0.1 | 0.3 | 18.2 | 0.5 | 0.6 | 12.2 |
5 | 12.2 | 1.1 | 8.3 | 0.3 | 8.1 | 38.0 | 2.6 | 1.5 | 7.3 | 1.6 | 11.0 | 8.0 |
Area | Chemical Composition (wt.%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ti | Cr | Fe | Co | Ni | Zr | Mo | Pd | Hf | W | Pt | |
1 | 19.5 | - | 0.7 | 0.8 | 4.3 | 35.5 | - | - | 24.4 | 0.0 | - | 14.7 |
2 | 16.5 | 0.4 | 2.5 | 0.7 | 4.4 | 35.0 | - | 0.5 | 20.7 | 1.3 | - | 17.9 |
3 | 18.1 | - | 1.9 | 0.6 | 4.4 | 34.6 | - | - | 24.2 | 0.0 | - | 16.2 |
4 | 11.3 | 0.4 | 4.1 | 0.6 | 6.4 | 32.5 | 11.9 | 2.1 | 11.7 | 5.9 | - | 13.0 |
5 | 11.6 | 1.0 | 6.2 | 0.7 | 8.1 | 35.5 | - | 1.3 | 8.6 | 0.4 | 10.9 | 15.5 |
6 | 5.1 | 0.9 | 8.9 | - | 10.9 | 59.4 | - | 0.8 | - | 0.7 | 13.4 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goral, M.; Pytel, M.; Ochal, K.; Drajewicz, M.; Kubaszek, T.; Simka, W.; Nieuzyla, L. Microstructure of Aluminide Coatings Modified by Pt, Pd, Zr and Hf Formed in Low-Activity CVD Process. Coatings 2021, 11, 421. https://doi.org/10.3390/coatings11040421
Goral M, Pytel M, Ochal K, Drajewicz M, Kubaszek T, Simka W, Nieuzyla L. Microstructure of Aluminide Coatings Modified by Pt, Pd, Zr and Hf Formed in Low-Activity CVD Process. Coatings. 2021; 11(4):421. https://doi.org/10.3390/coatings11040421
Chicago/Turabian StyleGoral, Marek, Maciej Pytel, Kamil Ochal, Marcin Drajewicz, Tadeusz Kubaszek, Wojciech Simka, and Lukasz Nieuzyla. 2021. "Microstructure of Aluminide Coatings Modified by Pt, Pd, Zr and Hf Formed in Low-Activity CVD Process" Coatings 11, no. 4: 421. https://doi.org/10.3390/coatings11040421
APA StyleGoral, M., Pytel, M., Ochal, K., Drajewicz, M., Kubaszek, T., Simka, W., & Nieuzyla, L. (2021). Microstructure of Aluminide Coatings Modified by Pt, Pd, Zr and Hf Formed in Low-Activity CVD Process. Coatings, 11(4), 421. https://doi.org/10.3390/coatings11040421