Tuning the Optical Properties of MEH–PPV/PFO Hybrid Thin Films via the Incorporation of CsPbBr3 Quantum Dots
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.3. Characterizations
3. Results and Discussion
3.1. Structural Characteristics
3.2. Optical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Longo, G.; Pertegás, A.; Martínez-Sarti, L.; Sessolo, M.; Bolink, H.J. Highly luminescent perovskite-aluminum oxide composites. J. Mater. Chem. C 2015, 3, 11286–11289. [Google Scholar] [CrossRef]
- Li, G.; Tan, Z.K.; Di, D.; Lai, M.L.; Jiang, L.; Lim, J.H.W.; Friend, R.H.; Greenham, N.C. Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Lett. 2015, 15, 2640–2644. [Google Scholar] [CrossRef] [Green Version]
- Yao, E.P.; Yang, Z.; Meng, L.; Sun, P.; Dong, S.; Yang, Y.; Yang, Y. High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites. Adv. Mater. 2017, 29, 1606859. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Zhao, H.; Zhang, J. Highly Stable and Luminescent Perovskite-Polymer Composites from a Convenient and Universal Strategy. ACS Appl. Mater. Interfaces 2018, 10, 4971–4980. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, J.; Chen, H.; Chen, J.; Zhu, R.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A.J.; Wu, S.T.; et al. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite-Polymer Composite Films. Adv. Mater. 2016, 28, 10710–10717. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wang, Z.; Xue, Y.; Ou, Q.; Polavarapu, L.; Zheng, J.; Qi, X.; Bao, Q. Synthesis, properties, and optical applications of low-dimensional perovskites. Chem. Commun. 2016, 52, 13637–13655. [Google Scholar] [CrossRef]
- Zhuo, Z.; Wu, X.; Yang, J. Two-dimensional silicon crystals with sizable band gaps and ultrahigh carrier mobility. Nanoscale 2018, 10, 1265–1271. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chem. Rev. 2015, 115, 12633–12665. [Google Scholar] [CrossRef]
- You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.C.; Gao, J.; Li, G.; et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446. [Google Scholar] [CrossRef] [Green Version]
- Zuo, C.; Ding, L. Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm. J. Mater. Chem. A 2015, 3, 9063–9066. [Google Scholar] [CrossRef]
- Liu, Y.; Hong, Z.; Chen, Q.; Chang, W.; Zhou, H.; Song, T.B.; Young, E.; Yang, Y.; You, J.; Li, G.; et al. Integrated perovskite/bulk-heterojunction toward efficient solar cells. Nano Lett. 2015, 15, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Han, G.S.; Yoo, J.S.; Yu, F.; Duff, M.L.; Kang, B.K.; Lee, J.K. Highly stable perovskite solar cells in humid and hot environment. J. Mater. Chem. A 2017, 5, 14733–14740. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Ghaithan, H.M.; Al-Asbahi, B.A.; Aldwayyan, A.S. Ultra-Stable Polycrystalline CsPbBr3 Perovskite–Polymer Composite Thin Disk for Light-Emitting Applications. Nanomaterials 2020, 10, 2382. [Google Scholar] [CrossRef] [PubMed]
- Christians, J.A.; Fung, R.C.M.; Kamat, P.V. An inorganic hole conductor for Organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758–764. [Google Scholar] [CrossRef]
- Qiu, L.; Ono, L.K.; Jiang, Y.; Leyden, M.R.; Raga, S.R.; Wang, S.; Qi, Y. Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells. J. Phys. Chem. B 2018, 122, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Qaid, S.M.H.; Ghaithan, H.M.; Al-Asbahi, B.A.; Aldwayyan, A.S. Single-Source Thermal Evaporation Growth and the Tuning Surface Passivation Layer Thickness Effect in Enhanced Amplified Spontaneous Emission Properties of CsPb(Br0.5Cl0.5)3 Perovskite Films. Polymers (Basel) 2020, 12, 2953. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Al-Asbahi, B.A.; Ghaithan, H.M.; AlSalhi, M.S.; Al dwayyan, A.S. Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films. J. Colloid Interface Sci. 2020, 563, 426–434. [Google Scholar] [CrossRef]
- Al-asbahi, B.A. Influence of SiO2/TiO2 Nanocomposite on the Optoelectronic Properties of PFO/MEH-PPV-Based OLED Devices. Polymers 2018, 10, 800. [Google Scholar] [CrossRef] [Green Version]
- Al-Asbahi, B.A.; Qaid, S.M.H.; Mohammad, M.H.; AlSalhi, M.S.; Aldwayyan, A.S. Long-range dipole–dipole energy transfer enhancement via addition of SiO2/TiO2 nanocomposite in PFO/MEH-PPV hybrid thin films. J. Appl. Polym. Sci. 2019, 136, 47845. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Khan, M.N.; Alqasem, A.; Hezam, M.; Aldwayyan, A. Restraining effect of film thickness on the behaviour of amplified spontaneous emission from methylammonium lead iodide perovskite. IET Optoelectron. 2018, 13, 2–6. [Google Scholar] [CrossRef]
- Optik, S.; Nipis, F.; Poli, N.; Sio, A. Optical Properties of Poly(9,9′-di-n-octylfluorenyl-2.7-diyl)/Amorphous SiO2 Nanocomposite Thin Films. Sains Malays. 2013, 42, 1151–1157. [Google Scholar]
- Mansoor Ali, S.; Kayani, A.; Al Garawi, M.S.; Al-Ghamdi, S.S.; Al-Salman, S.A.; Baig, M.R.; Alkhuraiji, T.S. Observation of nano sized particles in proton irradiated pm-355 polymer with x-ray diffraction (XRD) and morphological studies. Dig. J. Nanomater. Biostruct. 2017, 12, 727–732. [Google Scholar]
- Aziz, S.B.; Hamsan, M.H.; Kadir, M.F.Z.; Karim, W.O.; Abdullah, R.M. Development of polymer blend electrolyte membranes based on chitosan: Dextran with high ion transport properties for EDLC application. Int. J. Mol. Sci. 2019, 20, 3369. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.B.; Abidin, Z.H.Z.; Arof, A.K. Effect of silver nanoparticles on the DC conductivity in chitosansilver triflate polymer electrolyte. Phys. B Condens. Matter 2010, 405, 4429–4433. [Google Scholar] [CrossRef]
- Beal, R.E.; Slotcavage, D.J.; Leijtens, T.; Bowring, A.R.; Belisle, R.A.; Nguyen, W.H.; Burkhard, G.F.; Hoke, E.T.; McGehee, M.D. Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. J. Phys. Chem. Lett. 2016, 7, 746–751. [Google Scholar] [CrossRef]
- Li, C.; Zang, Z.; Han, C.; Hu, Z.; Tang, X.; Du, J.; Leng, Y.; Sun, K. Enhanced random lasing emission from highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles. Nano Energy 2017, 40, 195–202. [Google Scholar] [CrossRef]
- Keshav, R.; Padiyar, M.; Meghana, N.; Mahesha, M.G. Analysis of PV deposited ZnTe thin films through Urbach tail and photoluminescence spectroscopy. J. Lumin. 2018, 194, 257–263. [Google Scholar] [CrossRef]
- Thompson, C.V.; Carel, R. Stress and grain growth in thin films. J. Mech. Phys. Solids 1996, 44, 657–673. [Google Scholar] [CrossRef]
- Hung, H.W.; Yokoyama, N.; Yahiro, M.; Adachi, C. Low driving voltage organic light emitting diode using phenanthrene oligomers as electron transport layer. Thin Solid Films 2008, 516, 8717–8720. [Google Scholar] [CrossRef]
- Li, F.; Tang, H.; Shinar, J.; Resto, O.; Weisz, S.Z. Effects of aquaregia treatment of indium-tin-oxide substrates on the behavior of double layered organic light-emitting diodes. Appl. Phys. Lett. 1997, 70, 2741–2743. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Jumali, M.H.H.; AlSalhi, M.S. Enhanced optoelectronic properties of PFO/Fluorol 7GA hybrid light emitting diodes via additions of TiO2 nanoparticles. Polymers (Basel) 2016, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Al-Asbahi, B.A.; Haji Jumali, M.H.; Yap, C.C.; Mat Salleh, M. Influence of TiO2 nanoparticles on enhancement of optoelectronic properties of PFO-based light emitting diode. J. Nanomater. 2013, 2013, 561534. [Google Scholar] [CrossRef]
- Yakuphanoglu, F.; Cukurovali, A.; Yilmaz, I. Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolyl hydrazone ligand. Opt. Mater. (Amst) 2005, 27, 1363–1368. [Google Scholar] [CrossRef]
- Mebadi, A.; Houshmand, M.; Zandi, M.H.; Gorji, N.E. Simulations of the intermediate bandwidth fluctuations in nanostructured PV. Phys. E Low-Dimens. Syst. Nanostruct. 2013, 53, 130–136. [Google Scholar] [CrossRef]
- Hossain, M.S.; Kabir, H.; Rahman, M.M.; Hasan, K.; Bashar, M.S.; Rahman, M.; Gafur, M.A.; Islam, S.; Amri, A.; Jiang, Z.T.; et al. Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications. Appl. Surf. Sci. 2017, 392, 854–862. [Google Scholar] [CrossRef]
- Evingür, G.A.; Pekcan, Ö. Optical energy band gap of PAAm-GO composites. Compos. Struct. 2016, 183, 212–215. [Google Scholar] [CrossRef]
- Rawat, A.; Mahavar, H.K.; Chauhan, S.; Tanwar, A.; Singh, P.J. Optical band gap of polyvinylpyrrolidone/polyacrilamide blend thin films. Indian J. Pure Appl. Phys. 2012, 50, 100–104. [Google Scholar]
- Jumali, M.H.H.; Al-Asbahi, B.A.; Yap, C.C.; Salleh, M.M.; Alsalhi, M.S. Optoelectronic property enhancement of conjugated polymer in poly(9,9′-di-n-octylfluorenyl-2.7-diyl)/titania nanocomposites. Thin Solid Films 2012, 524, 257–262. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Qaid, S.M.H.; Hezam, M.; Bedja, I.; Ghaithan, H.M.; Aldwayyan, A.S. Effect of deposition method on the structural and optical properties of CH3NH3PbI3 perovskite thin films. Opt. Mater. 2020, 103, 109836. [Google Scholar]
- Yakuphanoglu, F.; Sekerci, M.; Ozturk, O.F. The determination of the optical constants of cu(ii) compound having 1-chloro-2,3-o-cyclohexylidinepropane thin film. Opt. Commun. 2004, 239, 275–280. [Google Scholar] [CrossRef]
- Chen, Y.H.; Ho, C.H. Temperature dependence of direct and indirect band gaps of Bi13I2S18 hexagonal rod crystals. Mater. Chem. Phys. 2018, 206, 71–75. [Google Scholar] [CrossRef]
- Tichy, L.; Ticha, H. Correlation between photo-induced red shift of the optical band gap and the slope of Urbach edge in amorphous and glassy As2S3. Mater. Lett. 2015, 164, 232–234. [Google Scholar] [CrossRef]
- Yahya, N.Z.; Rusop, M. Investigation on the Optical and Surface Morphology of Conjugated Polymer MEH-PPV: ZnO Nanocomposite Thin Films. J. Nanomater. 2012, 2012, 793679. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Qaid, S.M.H.; Ghaithan, H.M.; Aldwayyan, A.S. Triplet energy transfer mechanism of ternary organic hybrid thin films of PFO/MEH-PPV/CsPbBR3 perovskite quantum dots. Nanomaterials 2020, 10, 2094. [Google Scholar] [CrossRef]
Sample | FWHM (°) | D (nm) | Lattice Strain ε × 10−3 | Dislocation Density δ × 10−3 (nm)−2 | RMS Roughness (nm) |
---|---|---|---|---|---|
10 wt.% | 0.325 | 25.33 | 1.37 | 1.56 | 9.22 |
5 wt.% | 0.569 | 14.47 | 2.39 | 4.78 | 8.86 |
1 wt.% | 0.626 | 13.15 | 2.63 | 5.78 | 7.99 |
(MEH-PV/PFO) | - | - | - | - | 7.86 |
Pure PQDs | 0.676 | 11.86 | 2.92 | 7.12 | 15.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qaid, S.M.H.; Al-Asbahi, B.A.; Ghaithan, H.M.; Aldwayyan, A.S. Tuning the Optical Properties of MEH–PPV/PFO Hybrid Thin Films via the Incorporation of CsPbBr3 Quantum Dots. Coatings 2021, 11, 154. https://doi.org/10.3390/coatings11020154
Qaid SMH, Al-Asbahi BA, Ghaithan HM, Aldwayyan AS. Tuning the Optical Properties of MEH–PPV/PFO Hybrid Thin Films via the Incorporation of CsPbBr3 Quantum Dots. Coatings. 2021; 11(2):154. https://doi.org/10.3390/coatings11020154
Chicago/Turabian StyleQaid, Saif M. H., Bandar Ali Al-Asbahi, Hamid M. Ghaithan, and Abdullah S. Aldwayyan. 2021. "Tuning the Optical Properties of MEH–PPV/PFO Hybrid Thin Films via the Incorporation of CsPbBr3 Quantum Dots" Coatings 11, no. 2: 154. https://doi.org/10.3390/coatings11020154
APA StyleQaid, S. M. H., Al-Asbahi, B. A., Ghaithan, H. M., & Aldwayyan, A. S. (2021). Tuning the Optical Properties of MEH–PPV/PFO Hybrid Thin Films via the Incorporation of CsPbBr3 Quantum Dots. Coatings, 11(2), 154. https://doi.org/10.3390/coatings11020154