Design and Preparation of PU/EP Blend Resin Grafted by Hydrophilic Molecular Segments
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Reagents
2.2. Preparation of Hydrophilic PU/EP Grafted Blends
2.2.1. Principle of Synthesis
2.2.2. Detailed Synthesis Steps
2.3. Preparation of Solid Test Samples
3. Characterization and Testing
3.1. Characterization and Test Devices
3.2. Characterization and Test Methods
3.2.1. Determination of the Mass Fraction of NCO in the PU Prepolymer
3.2.2. Determination of the Epoxy Value
3.2.3. Infrared Spectroscopy Characterization
3.2.4. Contact Angle Test
3.2.5. Water Absorption Test
3.2.6. Tensile Property Test
3.2.7. Shear Strength Test
3.2.8. Dynamic Mechanical Performance Test
3.2.9. Ocean Hanging Plate Test
4. Results and Discussion
4.1. FTIR Analysis of PU Prepolymers before and after Grafting
4.2. Hydrophilicity of PU/EP Grafted Blends
4.3. Water Absorption Properties of PU/EP Grafted Blends
4.4. Mechanical Properties of PU/EP Grafted Blends
4.5. Dynamic Mechanical Properties of PU/EP Grafted Blends
4.6. Comparison of the Antifouling Effect Shown in the Marine Hanging Plate Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iheoma, C.N.; Christopher, I.I.; Simeon, C.N.; Obumneme, E.E. Emerging trends in self-polishing anti-fouling coatings for marine environment. Saf. Extrem. Environ. 2021, 3, 9–25. [Google Scholar]
- Diego, M.Y.; Soren, K.; Kim, D.J. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar]
- Selim, M.S.; Shenashen, M.A.; Sherif, A.E.; El-Safty, S.A.; Higazy, S.A.; Selim, M.M.; Isago, H.; Elmarakbi, A. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci. 2017, 87, 1–32. [Google Scholar] [CrossRef]
- Silva, E.; Ferreira, O.; Ramalho, P.; Azevedo, N.F.; Bayon, R.; Igartua, A.; Bordado, J.C.; Calhorda, M.J. Eco-friendly non-biocide-release coatings for marine biofouling prevention. Sci. Total Environ. 2019, 650, 2499–2511. [Google Scholar] [CrossRef]
- Gao, Q.H.; Yu, L.M.; Zhao, J.; Sui, J. Preparation methods of nano-cuprous oxide and its application in antifouling coatings. Shanghai Coat. 2008, 46, 30–32. [Google Scholar]
- Yu, X.Y.; Wang, K.; Chen, Z.T.; Haojie, Y.; Ling, X.; Taijiang, G. Research on Leaching Rate & Degradation Behavior of Cu2O Contained in Antifouling Paints. Paint Coat. Ind. 2012, 42, 45–48. [Google Scholar]
- Ataei, S.; Khorasani, S.N.; Torkaman, R.; Neisiany, R.E.; Koochaky, M.S. Self-healing performance of an epoxy coating containing microencapsulated alkyd resin based on coconut oil. Prog. Org. Coat. 2018, 120, 160–166. [Google Scholar] [CrossRef]
- Wang, X.J.; Yu, X.Y.; Cong, W.W.; Zhang, K.; Zhang, H.Q.; Lv, Z.; Wang, Z.H.; Gui, T.J. Current Research on Tin-free Self-polishing Antifouling Coatings. China Coat. 2021, 36, 1–4. [Google Scholar]
- Wang, D.; Bai, T.; Cheng, W.L.; Xu, C. Surface Modification of Bamboo Fibers to Enhance the Interfacial Adhesion of Epoxy Resin-Based Composites Prepared by Resin Transfer Molding. Polymers 2019, 11, 2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varganici, C.D.; Rosu, L.; Rosu, D.; Simionescu, B. Miscibility studies of some semi-interpenetrating polymer networks based on an aromatic polyurethane and epoxy resin. Compos. Part B Eng. 2013, 50, 273–278. [Google Scholar] [CrossRef]
- Byczyński, L.; Dutkiewicz, M.; Maciejewski, H. Thermal degradation kinetics of semi -interpenetrating polymer network based on polyurethane and siloxane. Thermochim. Acta 2013, 560, 55–62. [Google Scholar] [CrossRef]
- Jia, Q.M.; Zheng, M.; Chen, H.X.; Shen, R.J. Synthesis and characterization of PU/EP interpenetrating network nanocomposites with organoclays. Polym. Bull. 2005, 54, 65–73. [Google Scholar] [CrossRef]
- Lukowiak, M.C.; Wettmarshausen, S.; Hidde, G.; Landsberger, P.; Boenke, V.; Braun, U.; Rodenacker, K.; Friedrich, J.F.; Gorbushina, A.A.; Haag, R. Polyglycerol coated polypropylene surfaces for protein and bacteria resistance. Polym. Chem. 2005, 6, 1350–1359. [Google Scholar] [CrossRef] [Green Version]
- Herold, D.A.; Keil, K.; Bruns, D.E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacol. 1989, 38, 73–76. [Google Scholar] [CrossRef]
- Sofia, S.J.; Premnath, V.V.; Merrill, E.W. Poly (ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules 1998, 31, 5059–5070. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.C.; Wang, B.; Gong, W.; Kong, L.; Jia, Q. Investigation of the Hydrogen-Bonding Structure and Miscibility for PU/EP IPN Nanocomposites by PALS. Macromolecules 2006, 39, 9441–9445. [Google Scholar] [CrossRef]
- Mu, Z.G.; Bai, X.L.; Luo, Y.D.; Mei, J.T.; Zhang, M.H. Study on Microwave Curing of Polyurethane (PU)/Epoxy (EP) Interpenetrating Networks (IPN). Appl. Mech. Mater. 2014, 3207, 649–652. [Google Scholar] [CrossRef]
- Wang, X.Q.; Huang, Z.X.; Zheng, J.L.; Mei, Q.L. Study on the Synthesis and Properties of EP/PU Composite. Adv. Mater. Res. 2011, 221, 135–139. [Google Scholar] [CrossRef]
- Yu, P.; Li, G.T.; Zhang, L.G.; Zhao, F.; Guo, Y.; Pei, X.; Zhang, G. Role of SiC submicron-particles on tribofilm growth at water-lubricated interface of polyurethane/epoxy interpenetrating network (PU/EP IPN) composites and steel. Tribol. Int. 2021, 153, 106611. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Xu, M.; Zhou, P.; Ren, Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Rao, Q.H. Study on the properties of a novel epoxy toughening diluents. Thermoset. Resin 2009, 24, 9–13. [Google Scholar]
- Dong, Z.J.; Yang, X.X.; Chen, J.F.; Mao, H.Y.; Wang, C.X.; Yin, Y.J. Preparation and Coating of Hydrophilic Polyurethane Based Polymeric Dye. Polyurethane Ind. 2016, 31, 54–56. [Google Scholar]
- Cheng, W.H. Discussion on polymer water absorbent resin. Pap. Papermak. 2020, 1, 56. [Google Scholar]
- Dobretsov, S.; AlShibli, H.; Maharachchikumbura, S.S.N.; Abdullah, M.A. The Presence of Marine Filamentous Fungi on a Copper-Based Antifouling. Appl. Sci. 2021, 11, 8277. [Google Scholar] [CrossRef]
Reagents | Purity | Manufacturer |
---|---|---|
N, N-Dimethylformamide (DMF) | AP | Tianjin Guangfu Chemical Co., Ltd., Tianjin, China |
Butyl acetate | AR | Tianjin Guangfu Chemical Co., Ltd., Tianjin, China |
2, 4-toluene diisocyanate (TDI) | CP | Haikeda Chemical Co., Ltd., Haikeda, China |
Polyethylene glycol monomethyl ether (MPEG, the molecular weight is 1000) | AR | Nantong Haitianyuan Chemical Co., Ltd., Nantong, China |
EP (E20) | AR | Zhengzhou Haoyuan chemical Co., Ltd., Zhengzhou, China |
Di-n-butylamine | AR | Tianjin Bodi Chemical Co., Ltd., Tianjin, China |
Hydrochloric acid (HCl) | AR | Haikeda Chemical Co., Ltd., Haikeda, China |
Adduct of diethylenetriamine and butylglycidyl ether (593curing agent) | CP | Zhengzhou Haoyuan chemical Co., Ltd., Zhengzhou, China |
Cu2O | AR | Beilian Fine Chemical Co., Ltd., Beilian, China |
Fe2O3 | AR | Tianjin kemio Co., Ltd., Tianjin, China |
Air SiO2 | CP | Haihua Co., Ltd.,Weifang, China |
KH550 | CP | Xince Co., Ltd., Tianjin, China |
Commercial antifouling coating | CP | Kalin Co., Ltd., Shenzhen, China |
Marine anticorrosive paint | CP | Jiren Co., Ltd., Wuhan, China |
PU | 70 | 60 | 50 | 40 | 30 |
EP | 30 | 40 | 50 | 60 | 70 |
Devices | Type | Manufacturer |
---|---|---|
Fourier Infrared Spectrometer (IR) | Spectrum BX II | Perkin Elmer, OH, USA |
Dynamic Thermal Mechanical Analyzer (DMA) | METTLER TOLEDO | Mettler company, Greifensee, Switzerland |
Electronic universal testing machine | TH-500N | JiangduTianhui Test Machinery Co., Ltd., Jiangdu, China |
Contact Angle tester | JGW-360a | Chengde Shenghui Testing Machine Co., Ltd., Chengde, China |
PU/EP. | Tg (°C) | Max (Tanδ) |
---|---|---|
70/30 | −5.1 | 0.665 |
60/40 | 10.9 | 0.503 |
50/50 | 20.7 | 0.474 |
40/60 | 20.9 | 0.392 |
30/70 | 21.0 | 0.256 |
Sample | Amount (phr) | ||||||
---|---|---|---|---|---|---|---|
Anticorrosive Paint | Commercial Marine Antifouling Paint | PU/EP Grafted Blends | Cu2O | Fe2O3 | Air SiO2 | KH550 | |
Blank sample | √ | / | / | / | / | / | / |
Hydrophilic sample | √ | / | 100 | 20 | 10 | 4 | 2 |
Unmodified | √ | √ | / | / | / | / | / |
Days | Blank Sample | Hydrophilic Modified | Unmodified |
---|---|---|---|
0 | | | |
60 | | | |
120 | | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Shuai, C.; Liu, Y.; Yang, X.; Hu, X. Design and Preparation of PU/EP Blend Resin Grafted by Hydrophilic Molecular Segments. Coatings 2021, 11, 1345. https://doi.org/10.3390/coatings11111345
Lu G, Shuai C, Liu Y, Yang X, Hu X. Design and Preparation of PU/EP Blend Resin Grafted by Hydrophilic Molecular Segments. Coatings. 2021; 11(11):1345. https://doi.org/10.3390/coatings11111345
Chicago/Turabian StyleLu, Gang, Changgeng Shuai, Yinsong Liu, Xue Yang, and Xiaoyang Hu. 2021. "Design and Preparation of PU/EP Blend Resin Grafted by Hydrophilic Molecular Segments" Coatings 11, no. 11: 1345. https://doi.org/10.3390/coatings11111345
APA StyleLu, G., Shuai, C., Liu, Y., Yang, X., & Hu, X. (2021). Design and Preparation of PU/EP Blend Resin Grafted by Hydrophilic Molecular Segments. Coatings, 11(11), 1345. https://doi.org/10.3390/coatings11111345