Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble
Abstract
1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pozo-Antonio, J.S.; Ramil, A.; Rivas, T.; López, A.J.; Fiorucci, M.P. Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite. Constr. Build. Mater. 2016, 112, 682–690. [Google Scholar] [CrossRef]
- Suzuki, A.; Vettori, S.; Giorgi, S.; Carretti, E.; Di Benedetto, F.; Dei, L.; Benvenuti, M.; Moretti, S.; Pecchioni, E.; Costagliola, P. Laboratory study of the sulfation of carbonate stones through SWIR hyperspectral investigation. J. Cult. Herit. 2018, 32, 30–37. [Google Scholar] [CrossRef]
- Ordóñez, S.; La Iglesia, Á.; Louis, M.; García-del-Cura, M.Á. Mineralogical evolution of salt over nine years, after removal of efflorescence and saline crusts from Elche’s Old Bridge (Spain). Constr. Build. Mater. 2016, 112, 343–345. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, F.W.; Zuo, G.F.; Zhang, R.X.; Wei, G.F.; Ma, Q. Protection of the surface weathering stone artworks by a chemical conversion method. Constr. Build. Mater. 2018, 182, 210–214. [Google Scholar] [CrossRef]
- Mooers, H.D.; Carlson, M.J.; Harrison, R.M.; Inkpen, R.J.; Loeffler, S. Correlation of gravestone decay and air quality 1960-2010. Atmos. Environ. 2017, 152, 156–171. [Google Scholar] [CrossRef][Green Version]
- Comite, V.; Álvarez de Buergo, M.; Barca, D.; Belfiore, C.M.; Bonazza, A.; La Russa, M.F.; Pezzino, A.; Randazzo, L.; Ruffolo, S.A. Damage monitoring on carbonate stones: Field exposure tests contributing to pollution impact evaluation in two Italian sites. Constr. Build. Mater. 2017, 152, 907–922. [Google Scholar] [CrossRef]
- Iqbal, M. Perception of darkening of stone façades and the need for cleaning. Int. J. Sus. Built. Environ. 2013, 2, 65–72. [Google Scholar] [CrossRef]
- Moropoulou, A.; Kefalonitou, S. Efficiency and countereffects of cleaning treatment on limestone surfaces—investigation on the Corfu Venetian Fortress. Build. Environ. 2002, 37, 1181–1191. [Google Scholar] [CrossRef]
- Dei, L.; Baglioni, P.; Sarti, G.; Ferroni, E. Aging effects on ammonium carbonate/acetone solutions and cleaning of works of art. Stud. Conserv. 1996, 41, 9–18. [Google Scholar] [CrossRef]
- van Hees, R.; Veiga, R.; Slížková, Z. Consolidation of renders and plasters. Mater. Struct. 2017, 50, 65. [Google Scholar] [CrossRef]
- Senesi, G.S.; Allegretta, I.; Porfido, C.; De Pascale, O.; Terzano, R. Application of micro X-ray fluorescence and micro computed tomography to the study of laser cleaning efficiency on limestone monuments covered by black crusts. Talanta 2018, 178, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Grossi, C.M.; Benavente, D. Colour changes by laser irradiation of reddish building limestones. Appl. Surf. Sci. 2016, 384, 525–529. [Google Scholar] [CrossRef]
- Godet, M.; Vergès-Belmin, V.; Gauquelin, N.; Saheb, M.; Monnier, J.; Leroy, E.; Bourgon, J.; Verbeeck, J.; Andraud, C. Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing. Micron 2018, 115, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Carvalhão, M.; Dionísio, A. Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones. J. Cult. Herit. 2015, 16, 579–590. [Google Scholar] [CrossRef]
- Iglesias-Campos, M.Á.; Prada Pérez, J.L.; García Fortes, S. Spot analysis to determine technical parameters of microblasting cleaning for building materials maintenance. Constr. Build. Mater. 2017, 132, 21–32. [Google Scholar] [CrossRef]
- Yu, D.M.; Guan, B.W.; He, R.; Xiong, R.; Liu, Z.Z. Sulfate attack of Portland cement concrete under dynamic flexural loading: A coupling function. Constr. Build. Mater. 2016, 115, 478–485. [Google Scholar] [CrossRef]
- Carmona-Quiroga, P.M.; Blanco-Varela, M.T. Use of barium carbonate to inhibit sulfate attack in cements. Cement Concrete Res. 2015, 69, 96–104. [Google Scholar] [CrossRef]
- CIE Standard Illuminants for Colorimetry—Part 2: CIE Standard Illuminants; BS ISO 10526-2007; CIE Central Bureau: London, UK, 2007.
- Test Methods for Natural Facing Stones—Part 3: Test Methods for Bulk Density, True Density, True Porosity and Water Absorption; GB/T 9966.3-2001; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2001.
- De Kock, T.; Van Stappen, J.; Fronteau, G.; Boone, M.; De Boever, W.; Dagrain, F.; Silversmit, G.; Vincze, L.; Cnudde, V. Laminar gypsum crust on lede stone: Microspatial characterization and laboratory acid weathering. Talanta 2017, 162, 193–202. [Google Scholar] [CrossRef]
- Lamhasni, T.; El-Marjaoui, H.; El Bakkali, A.; Ait Lyazidi, S.; Haddad, M.; Ben-Ncer, A.; Benyaich, F.; Bonazza, A.; Tahri, M. Air pollution impact on architectural heritage of Morocco: Combination of synchronous fluorescence and ATR-FTIR spectroscopies for the analyses of black crusts deposits. Chemosphere 2019, 225, 517–523. [Google Scholar] [CrossRef]
- Tang, J.H.; Bullard, J.W.; Perry, L.N.; Feng, P.; Liu, J.P. An empirical rate law for gypsum powder dissolution. Chem. Geol. 2018, 498, 96–105. [Google Scholar] [CrossRef]
- Petrou, A.L.; Terzidaki, A. Calcium carbonate and gypsum precipitation, crystallization and dissolution: Evidence for the activated steps and the mechanisms from the enthalpy and entropy of activation values. Chem. Geo. 2014, 381, 144–153. [Google Scholar] [CrossRef]
- Torres, E.; Lozano, A.; Macías, F.; Gomez-Arias, A.; Castillo, J.; Ayora, C. Passive elimination of sulfate and metals from acid mine drainage using combined limestone and barium carbonate systems. J. Clean Prod. 2018, 182, 114–123. [Google Scholar] [CrossRef]
Samples | Surface Composition | Color Difference (∆E) | Capillary Suction (%) |
---|---|---|---|
Marble | Calcite | - | 0.08 (±0.03) |
Marble with gypsum layer | Calcium sulphate | 3.6 (±0.02) | 0.10 (±0.02) |
Marble after removal of the gypsum layer | Calcite | 0.8 (±0.03) | 0.09 (±0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Dong, T.; Zhang, K.; Yang, F.; Wang, L. Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble. Coatings 2021, 11, 37. https://doi.org/10.3390/coatings11010037
Liu Y, Dong T, Zhang K, Yang F, Wang L. Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble. Coatings. 2021; 11(1):37. https://doi.org/10.3390/coatings11010037
Chicago/Turabian StyleLiu, Yan, Taoling Dong, Kun Zhang, Fuwei Yang, and Liqin Wang. 2021. "Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble" Coatings 11, no. 1: 37. https://doi.org/10.3390/coatings11010037
APA StyleLiu, Y., Dong, T., Zhang, K., Yang, F., & Wang, L. (2021). Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble. Coatings, 11(1), 37. https://doi.org/10.3390/coatings11010037