Al2O3 and Pt Atomic Layer Deposition for Surface Modification of NiTi Shape Memory Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. ALD
2.3. Microscopic Observations
2.4. XPS and XRD (X-ray Diffraction) Measurements
3. Results
3.1. Microscopic Observations
3.2. XPS and XRD Measurements
4. Discussion
4.1. Pt Phase
4.2. Al2O3 Phase
4.3. The Effect of the Pt and Al2O3 ALD Processes on Properties of the NiTi Layer
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leskelä, M.; Ritala, M. Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem. Int. Ed. 2003, 42, 5548–5554. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Park, J.Y.; Kim, S.S. Synthesis of SnO2–ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology 2009, 20, 465603. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Leskelä, M.; Ritala, M. Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 2002, 409, 138–146. [Google Scholar] [CrossRef]
- Mackus, A.J.; Schneider, J.R.; MacIsaac, C.; Baker, J.G.; Bent, S.F. Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: A review. Chem. Mater. 2018, 31, 1142–1183. [Google Scholar] [CrossRef]
- Sønsteby, H.H.; Fjellvåg, H.; Nilsen, O. Functional perovskites by atomic layer deposition—An overview. Adv. Mater. Interfaces 2017, 4, 1600903. [Google Scholar] [CrossRef]
- Hultqvist, A.; Edoff, M.; Törndahl, T. Evaluation of Zn–Sn–O buffer layers for CuIn0.5Ga0.5Se2 solar cells. Prog. Photovolt. Res. Appl. 2011, 19, 478–481. [Google Scholar] [CrossRef]
- Putkonen, M.; Sajavaara, T.; Rahkila, P.; Xu, L.; Cheng, S.; Niinistö, L.; Whitlow, H.J. Atomic layer deposition and characterization of biocompatible hydroxyapatite thin films. Thin Solid Films 2009, 517, 5819–5824. [Google Scholar] [CrossRef]
- Kosola, A.; Putkonen, M.; Johansson, L.S.; Niinistö, L. Effect of annealing in processing of strontium titanate thin films by ALD. Appl. Surf. Sci. 2003, 211, 102–112. [Google Scholar] [CrossRef]
- Ritala, M.; Niinisto, J. Chemical Vapour Deposition: Precursors, Processes and Applications; Royal Society of Chemistry: London, UK, 2009. [Google Scholar]
- Poodt, P.; Lankhorst, A.; Roozeboom, F.; Spee, K.; Maas, D.; Vermeer, A. High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 2010, 22, 3564–3567. [Google Scholar] [CrossRef]
- Won, S.J.; Suh, S.; Huh, M.S.; Kim, H.J. High-quality low-temperature silicon oxide by plasma-enhanced atomic layer deposition using a metal–organic silicon precursor and oxygen radical. IEEE Electron Device Lett. 2010, 31, 857–859. [Google Scholar]
- Groner, M.D.; Fabreguette, F.H.; Elam, J.W.; George, S.M. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 2004, 16, 639–645. [Google Scholar] [CrossRef]
- King, J.S.; Graugnard, E.; Summers, C.J. TiO2 inverse opals fabricated using low-temperature atomic layer deposition. Adv. Mater. 2005, 17, 1010–1013. [Google Scholar] [CrossRef]
- Sønsteby, H.H.; Yanguas-Gil, A.; Elam, J.W. Consistency and reproducibility in atomic layer deposition. J. Vac. Sci. Technol. A Vac. Surf. Films 2020, 38, 020804. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Yin, H.; Zhou, R.; Sun, Q. Ambient effect on damping peak of NiTi shape memory alloy. Mater. Lett. 2010, 64, 1483–1486. [Google Scholar] [CrossRef]
- Heller, L.; Vokoun, D.; Šittner, P.; Finckh, H. 3D flexible NiTi-braided elastomer composites for smart structure applications. Smart Mater. Struct. 2012, 21, 045016. [Google Scholar] [CrossRef]
- Van Humbeeck, J.; Stalmans, R. Thermomechanical Properties of SMA: Shape Memory Materials; Otsuka, K., Wayman, C.M., Eds.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Fu, Y.Q.; Huang, W.M.; Du, H.J.; Huang, X.; Tan, J.P.; Gao, X.Y. Characterization of TiNi shape-memory alloy thin films for MEMS applications. Surf. Coat. Technol. 2001, 145, 107–112. [Google Scholar] [CrossRef]
- Gill, J.J.; Chang, D.T.; Momoda, L.A.; Carman, G.P. Manufacturing issues of thin film NiTi microwrapper. Sens. Actuators A 2001, 93, 148–156. [Google Scholar] [CrossRef]
- Kahn, H.; Huff, M.A.; Heuer, A.H. The TiNi shape-memory alloy and its applications for MEMS. J. Micromech. Microeng. 1998, 8, 213–221. [Google Scholar] [CrossRef]
- Xu, D.; Wang, L.; Ding, G.F.; Zhou, Y.; Yu, A.B.; Cai, B.C. Characteristics and fabrication of NiTi/Si diaphragm micropump. Sens. Actuators A 2001, 93, 87–92. [Google Scholar] [CrossRef]
- Choudhary, N.; Kaur, D. Shape memory alloy thin films and heterostructures for MEMS applications: A review. Sens. Actuators A 2016, 242, 162–181. [Google Scholar] [CrossRef]
- Es-Souni, M.; Es-Souni, M.; Fischer-Brandies, H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal. Bioanal. Chem. 2005, 381, 557–567. [Google Scholar] [CrossRef]
- Huang, W. On the selection of shape memory alloys for actuators. Mater. Des. 2002, 23, 11–19. [Google Scholar] [CrossRef]
- Wilson, S.A.; Jourdain, R.P.J.; Zhang, Q.; Dorey, R.A.; Bowen, C.R.; Willander, M.; Wahab, Q.U.; Willander, M.; Al-hilli, S.M.; Nur, O.; et al. New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng. R Rep. 2007, 56, 1–129. [Google Scholar] [CrossRef] [Green Version]
- Chluba, C.; Ge, W.; de Miranda, R.L.; Strobel, J.; Kienle, L.; Quandt, E.; Wuttig, M. Ultralow-fatigue shape memory alloy films. Science 2015, 348, 1004–1007. [Google Scholar] [CrossRef]
- Eggeler, G.; Hornbogen, E.; Yawny, A.; Heckmann, A.; Wagner, M. Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 2004, 378, 24–33. [Google Scholar] [CrossRef]
- Kei, C.C.; Yu, Y.S.; Racek, J.; Vokoun, D.; Šittner, P. Atomic layer-deposited Al2O3 coatings on NiTi alloy. J. Mater. Eng. Perform. 2014, 23, 2641–2649. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Chen, X.; Leng, B.; Guo, X.; Zhang, T. ALD mediated heparin grafting on nitinol for self-expanded carotid stents. Colloids Surf. B Biointerfaces 2016, 143, 390–398. [Google Scholar] [CrossRef]
- Lin, H.C.; Chang, Y.L.; Han, Y.Y.; Yang, K.C.; Chen, M.C. Atomic layer deposited Al2O3 films on NiTi shape memory alloys for biomedical applications. Procedia Manuf. 2019, 37, 431–437. [Google Scholar] [CrossRef]
- Piltaver, I.K.; Peter, R.; Šarić, I.; Salamon, K.; Badovinac, I.J.; Koshmak, K.; Nannarone, S.; Marion, I.D.; Petravić, M. Controlling the grain size of polycrystalline TiO2 films grown by atomic layer deposition. Appl. Surf. Sci. 2017, 419, 564–572. [Google Scholar] [CrossRef]
- Muralidharan, N.; Brock, C.N.; Cohn, A.P.; Schauben, D.; Carter, R.E.; Oakes, L.; Walker, D.G.; Pint, C.L. Tunable mechanochemistry of lithium battery electrodes. ACS Nano 2017, 11, 6243–6251. [Google Scholar] [CrossRef] [PubMed]
- Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C.C.; Yu, Y.S.; Klimša, L.; Šittner, P. Atomic layer-deposited TiO2 coatings on NiTi surface. J. Mater. Eng. Perform. 2018, 27, 572–579. [Google Scholar] [CrossRef]
- Vokoun, D.; Kadeřávek, L.; Kei, C.C.; Yu, Y.S.; Koothan, N. Atomic layer deposited Pt coatings on NiTi thin films. In Proceedings of the International Conference on Shape Memory and Superelastic Technologies SMST 2019, Konstanz, Germany, 13–17 May 2019. [Google Scholar]
- Elers, K.E.; Saanila, V.; Soininen, P.J.; Li, W.M.; Kostamo, J.T.; Haukka, S.; Juhanoja, J.; Besling, W.F. Diffusion barrier deposition on a copper surface by atomic layer deposition. Chem. Vap. Depos. 2002, 8, 149–153. [Google Scholar] [CrossRef]
- Jiang, X.; Bent, S.F. Area-selective ALD with soft lithographic methods: Using self-assembled monolayers to direct film deposition. J. Phys. Chem. C 2009, 113, 17613–17625. [Google Scholar] [CrossRef]
- Schaffer, J.E.; Gordon, R. Engineering characteristics of drawn filled nitinol tube. In SMST-2003, Proceedings of the International Conference on Shape Memory and Superelastic Technologies; ASM International: Cleveland, OH, USA, 2004; pp. 109–118. [Google Scholar]
- Baker, L.; Cavanagh, A.S.; Yin, J.; George, S.M.; Kongkanand, A.; Wagner, F.T. Growth of continuous and ultrathin platinum films on tungsten adhesion layers using atomic layer deposition techniques. Appl. Phys. Lett. 2012, 101, 111601. [Google Scholar] [CrossRef]
- Bondi, A. The spreading of liquid metals on solid surfaces. Surface chemistry of high-energy substances. Chem. Rev. 1953, 52, 417–458. [Google Scholar] [CrossRef]
- Anitha, V.C.; Zazpe, R.; Krbal, M.; Yoo, J.; Sopha, H.; Prikryl, J.; Macak, J.M. Anodic TiO2 nanotubes decorated by Pt nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation. J. Catal. 2018, 365, 86–93. [Google Scholar] [CrossRef]
- Lai, Y.; Gong, J.; Lin, C. Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. Int. J. Hydrog. Energy 2012, 37, 6438–6446. [Google Scholar] [CrossRef]
- Yoo, J.; Zazpe, R.; Cha, G.; Prikryl, J.; Hwang, I.; Macak, J.M.; Schmuki, P. Uniform ALD deposition of Pt nanoparticles within 1D anodic TiO2 nanotubes for photocatalytic H2 generation. Electrochem. Commun. 2018, 86, 6–11. [Google Scholar] [CrossRef]
- Hsu, I.J.; Hansgen, D.A.; McCandless, B.E.; Willis, B.G.; Chen, J.G. Atomic layer deposition of Pt on tungsten monocarbide (WC) for the oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 3709–3715. [Google Scholar] [CrossRef]
- Comstock, D.J.; Christensen, S.T.; Elam, J.W.; Pellin, M.J.; Hersam, M.C. Tuning the composition and nanostructure of Pt/Ir films via anodized aluminum oxide templated atomic layer deposition. Adv. Funct. Mater. 2010, 20, 3099–3105. [Google Scholar] [CrossRef]
- Lee, H.B.R.; Bent, S.F. Microstructure-dependent nucleation in atomic layer deposition of Pt on TiO2. Chem. Mater. 2012, 24, 279–286. [Google Scholar] [CrossRef]
- Mackus, A.J.; Garcia-Alonso, D.; Knoops, H.C.; Bol, A.A.; Kessels, W.M. Room-temperature atomic layer deposition of platinum. Chem. Mater. 2013, 25, 1769–1774. [Google Scholar] [CrossRef]
- Hämäläinen, J.; Munnik, F.; Ritala, M.; Leskela, M. Atomic layer deposition of platinum oxide and metallic platinum thin films from Pt (acac) 2 and ozone. Chem. Mater. 2008, 20, 6840–6846. [Google Scholar] [CrossRef]
- Lee, W.J.; Wan, Z.; Kim, C.M.; Oh, I.K.; Harada, R.; Suzuki, K.; Choi, E.A.; Kwon, S.H. Atomic layer deposition of Pt thin films using Dimethyl (N, N-Dimethyl-3-Butene-1-Amine-N) Platinum and O2 reactant. Chem. Mater. 2019, 31, 5056–5064. [Google Scholar] [CrossRef]
- Elam, J.W.; Zinovev, A.V.V.; Pellin, M.J.; Comstock, D.J.; Hersam, M.C. Nucleation and growth of noble metals on oxide surfaces using atomic layer deposition. ECS Trans. 2007, 3, 271–278. [Google Scholar] [CrossRef]
- Chan, C.M.; Trigwell, S.; Duerig, T. Oxidation of an NiTi Alloy. Surf. Interface Anal. 1990, 15, 349–354. [Google Scholar] [CrossRef]
- Cavanagh, A.S.; Baker, L.; Clancey, J.W.; Yin, J.; Kongkanand, A.; Wagner, F.T.; George, S.M. In situ characterization of plasma-assisted Pt ALD on W ALD adhesion layers with spectroscopic ellipsometry. ECS Trans. 2013, 58, 19–26. [Google Scholar] [CrossRef]
- Vokoun, D.; Kadeřávek, L.; Balogová, J.; Fekete, L.; Landa, M.; Drahokoupil, J.; Němeček, J.; Heller, L. Effect of FIB milling on NiTi films and NiTi/Si micro-bridge sensor. Smart Mater. Struct. 2019, 29, 015001. [Google Scholar] [CrossRef]
- Fairley, N. CasaXPS Manual 2.3. 15: Introduction to XPS and AES; Casa Software: Ltd, Teignmouth, UK, 2009. [Google Scholar]
- Shyu, J.Z.; Otto, K. Identification of platinum phases on γ-alumina by XPS. Appl. Surf. Sci. 1988, 32, 246–252. [Google Scholar] [CrossRef]
- Ding, S.J.; Chen, H.B.; Cui, X.M.; Chen, S.; Sun, Q.Q.; Zhou, P.; Lu, H.L.; Zhang, D.W.; Shen, C. Atomic layer deposition of high-density Pt nanodots on Al2O3 film using (MeCp)Pt(Me)3 and O2 precursors for nonvolatile memory applications. Nanoscale Res. Lett. 2013, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, D.R.G.; Triani, G.; Attard, D.J.; Finnie, K.S.; Evans, P.J.; Barbé, C.J.; Bartlett, J.R. Atomic layer deposition of TiO2 and Al2O3 thin films and nanolaminates. Smart Mater. Struct. 2005, 15, S57. [Google Scholar] [CrossRef]
- Miikkulainen, V.; Leskelä, M.; Ritala, M.; Puurunen, R.L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 2013, 113, 2. [Google Scholar] [CrossRef]
- Puurunen, R.L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97, 9. [Google Scholar] [CrossRef]
- Vokoun, D.; Hu, C.T. Two-way shape memory effect in Fe-28.8 at.% Pd melt-spun ribbons. Scr. Mater. 2002, 47, 453–457. [Google Scholar] [CrossRef]
- Vokoun, D.; Sysel, P.; Heller, L.; Kadeřávek, L.; Svatuška, M.; Goryczka, T.; Kafka, V.; Šittner, P. NiTi-Polyimide composites prepared using thermal imidization process. J. Mater. Eng. Perform. 2016, 25, 1993–1999. [Google Scholar] [CrossRef]
Sample | Name |
---|---|
NiTi/Si | NiTi |
Al2O3_ALD_10_cycles/NiTi/Si | Alu10 |
Pt_100_ALD_cycles/Al2O3_ALD_10_cycles /NiTi/Si | Pt100 |
Pt_200_ALD_cycles/Al2O3_ALD_10_cycles /NiTi/Si | Pt200 |
Etch (min) | Pt (at.%) | Al (at.%) | C (at.%) | Ti (at.%) | O (at.%) | Ni (at.%) |
---|---|---|---|---|---|---|
0 | 4.75 | 8.47 | 37.99 | 4.65 | 44.15 | 0.00 |
10 | 7.73 | 9.23 | 10.55 | 17.34 | 53.95 | 1.19 |
20 | 9.05 | 9.20 | 9.13 | 18.53 | 52.17 | 1.92 |
30 | 9.21 | 8.54 | 9.80 | 19.33 | 50.85 | 2.27 |
40 | 9.71 | 8.19 | 9.44 | 19.79 | 49.88 | 2.99 |
50 | 10.58 | 7.14 | 8.84 | 20.84 | 48.38 | 4.21 |
60 | 11.14 | 7.17 | 7.23 | 21.36 | 47.34 | 5.77 |
Sample | Transformation Temperature | AFM | XRD | Resonant Ultrasound Spectroscopy |
---|---|---|---|---|
NiTi | Ms (°C) | 43 | 43 | 44 |
NiTi | Mf (°C) | - | - | 17 |
NiTi | As (°C) | - | - | 33 |
NiTi | Af (°C) | - | - | 75 |
Pt100 | Ms (°C) | - | 57 | - |
Pt200 | Ms (°C) | - | 57 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vokoun, D.; Klimša, L.; Vetushka, A.; Duchoň, J.; Racek, J.; Drahokoupil, J.; Kopeček, J.; Yu, Y.-S.; Koothan, N.; Kei, C.-C. Al2O3 and Pt Atomic Layer Deposition for Surface Modification of NiTi Shape Memory Films. Coatings 2020, 10, 746. https://doi.org/10.3390/coatings10080746
Vokoun D, Klimša L, Vetushka A, Duchoň J, Racek J, Drahokoupil J, Kopeček J, Yu Y-S, Koothan N, Kei C-C. Al2O3 and Pt Atomic Layer Deposition for Surface Modification of NiTi Shape Memory Films. Coatings. 2020; 10(8):746. https://doi.org/10.3390/coatings10080746
Chicago/Turabian StyleVokoun, David, Ladislav Klimša, Aliaksei Vetushka, Jan Duchoň, Jan Racek, Jan Drahokoupil, Jaromír Kopeček, Yo-Shane Yu, Narmatha Koothan, and Chi-Chung Kei. 2020. "Al2O3 and Pt Atomic Layer Deposition for Surface Modification of NiTi Shape Memory Films" Coatings 10, no. 8: 746. https://doi.org/10.3390/coatings10080746
APA StyleVokoun, D., Klimša, L., Vetushka, A., Duchoň, J., Racek, J., Drahokoupil, J., Kopeček, J., Yu, Y.-S., Koothan, N., & Kei, C.-C. (2020). Al2O3 and Pt Atomic Layer Deposition for Surface Modification of NiTi Shape Memory Films. Coatings, 10(8), 746. https://doi.org/10.3390/coatings10080746