Waterborne Coating Binders Based on Self-Crosslinking Acrylic Latex with Embedded Inorganic Nanoparticles: A Comparison of Nanostructured ZnO and MgO as Crosslink Density Enhancing Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of Latexes
2.3. Characterization of Inherent Structure of Coating Binder Materials
2.4. Storage Stability Testing
2.5. Preparation and Characterization of Coating Films
3. Results and Discussion
3.1. Properties of Latexes
3.2. Inherent Structure of Coating Binders
3.3. Storage Stability of Self-Crosslinking Latexes
3.4. Coating Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, S.; Soucek, M.D. Model compound study for acrylic latex crosslinking reactions with cycloaliphatic epoxides. J. Coat. Technol. 1997, 69, 43–49. [Google Scholar] [CrossRef]
- Tillet, G.; Boutevin, B.; Ameduri, B. Chemical reactions of polymer crosslinking and post-crosslinking at room temperature. Prog. Polym. Sci. 2011, 36, 191–217. [Google Scholar] [CrossRef]
- Gonzáles, I.; Asua, J.M.; Leiza, J.R. Crosslinking in acetoacetoxy functional waterborne crosslinkable latexes. Macromol. Symp. 2006, 243, 53–62. [Google Scholar] [CrossRef]
- Nakayama, Y. Development of novel aqueous coatings which meet the requirements of ecology-conscious society: Novel cross-linking system based on the carbonyl-hydrazide reaction and its applications. Prog. Org. Coat. 2004, 51, 280–299. [Google Scholar] [CrossRef]
- Li, M.; Lin, X.; Li, X.; Wang, H. Preparation and property study of core–shell ambient-temperature crosslinkable polyacrylate binder. Appl. Mech. Mat. 2014, 469, 3–6. [Google Scholar] [CrossRef]
- Zhang, S.F.; He, Y.F.; Wang, R.M.; Wu, Z.M.; Song, P.F. Preparation of emulsifier-free acrylate cross-linkable copolymer emulsion and application in coatings for controlling indoor. Iran Polym. J. 2013, 22, 447–456. [Google Scholar] [CrossRef]
- Koukiotis, C.G.; Karabela, M.M.; Sideridou, I.D. Mechanical properties of films of latexes based on copolymers BA/MMA/DAAM and BA/MMA/VEOVA-10/DAAM and the corresponding self-crosslinked copolymers using the adipic acid dihydrazide as crosslinking agent. Prog. Org. Coat. 2012, 75, 106–115. [Google Scholar] [CrossRef]
- Koukiotis, C.; Sideridou, I.D. Synthesis and characterization of latexes based on copolymers BA/MMA/DAAM and BA/MMA/VEOVA-10/DAAM and the corresponding 1K crosslinkable binder using the adipic acid dihydrazide as crosslinking agent. Prog. Org. Coat. 2010, 69, 504–509. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Huang, H.; Li, Y.; Chen, H. The diacetone acrylamide crosslinking reaction and its control of core−shell polyacrylate lattices at ambient temperature. J. Appl. Polym. Sci. 2012, 123, 1822–1832. [Google Scholar] [CrossRef]
- Taylor, J.W.; Winnik, M.A. Functional latex and thermoset latex films. JCT Res. 2004, 1, 163–190. [Google Scholar] [CrossRef]
- Lee, D.I. The effects of latex coalescence and interfacial crosslinking on the mechanical properties of latex films. Polymer 2005, 46, 1287–1293. [Google Scholar] [CrossRef]
- Pinprayoon, O.; Saiani, A.; Groves, R.; Saunders, B.R. Particulate ionomer films prepared from dispersions of crosslinked polymer colloids: A structure–property study. J. Colloid Interface Sci. 2009, 336, 73–81. [Google Scholar] [CrossRef]
- Machotová, J.; Černošková, E.; Honzíček, J.; Šňupárek, J. Water sensitivity of fluorine-containing polyacrylate latex coatings: Effects of crosslinking and ambient drying conditions. Prog. Org. Coat. 2018, 120, 266–273. [Google Scholar] [CrossRef]
- Schuman, T.; Wikström, M.; Rigdahl, M. Dispersion coating with carboxylated and cross-linked styrene−butadiene lattices. 1. Effect of some polymer characteristics on film properties. Prog. Org. Coat. 2004, 51, 220–227. [Google Scholar] [CrossRef]
- Kan, C.S.; Blackson, J.H. Effect of Ionomeric Behavior on the viscoelastic properties and morphology of carboxylated latex films. Macromolecules 1996, 29, 6853–6864. [Google Scholar] [CrossRef]
- Li, J.H.; Hong, R.Y.; Li, M.Y.; Li, H.Z.; Zheng, Y.; Ding, J. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat. 2009, 64, 504–509. [Google Scholar] [CrossRef]
- Seo, J.; Jeon, G.; Jang, E.S.; Khan, S.B.; Han, H. Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications. J. Appl. Polym. Sci. 2011, 122, 1101–1108. [Google Scholar] [CrossRef]
- Chaurasia, V.; Chand, N.; Bajpai, S.K. Water sorption properties and antimicrobial action of zinc oxide nanoparticles-loaded cellulose acetate films. J. Macromol. Sci. Pure Appl. Chem. 2010, 47, 309–317. [Google Scholar] [CrossRef]
- Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloid Surf. A Phys. Eng. Asp. 2014, 457, 263–274. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Hong, R.Y.; Li, J.H.; Chen, L.L.; Liu, D.Q.; Li, H.Z.; Zheng, Y.; Ding, J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 2009, 189, 426–432. [Google Scholar] [CrossRef]
- Becheri, A.; Dürr, M.; Lo Nostro, P.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res. 2008, 10, 679–689. [Google Scholar] [CrossRef]
- Morsi, R.E.; Labena, A.; Khamis, E.A. Core/shell (ZnO/polyacrylamide) nanocomposite: In-situ emulsion polymerazion, corrosion inhibition, anti-microbial and anti-biofilm characteristics. J. Taiwan Inst. Chem. Eng. 2016, 63, 512–522. [Google Scholar] [CrossRef]
- Pan, T.; Lee, Y.; Chu, C.; Chen, Y.; Tsai, C.; Lee, C. Synthesis and characteristics of poly(methacrylic acid-co-Nisopropylacrylamide)/Nano ZnO thermosensitive composite hollow latex particles. Polymer 2012, 53, 1665–1674. [Google Scholar] [CrossRef]
- Xiong, M.; Gu, G.; You, B.; Wu, L. Preparation and characterization of poly(styrene butylacrylate) latex/nano-ZnO nanocomposites. J. Appl. Polym. Sci. 2003, 90, 1923–1931. [Google Scholar] [CrossRef]
- Tang, E.; Cheng, G.; Pang, X.; Ma, X.; Xing, F. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property. Colloid Polym. Sci. 2006, 284, 422–428. [Google Scholar] [CrossRef]
- Tang, E.; Liu, H.; Sun, L.; Zheng, E.; Cheng, G. Fabrication of zinc oxide/poly(styrene) grafted nanocomposite latex and its dispersion. Eur. Polym. J. 2007, 43, 4210–4218. [Google Scholar] [CrossRef]
- Chimenti, S.; Vega, J.M.; Aguirre, M.; García-Lecina, E.; Díez, J.A.; Grande, H.J.; Paulis, M.; Leiza, J.R. Effective incorporation of ZnO nanoparticles by miniemulsion polymerization in waterborne binders for steel corrosion protection. J. Coat. Technol. Res. 2017, 14, 829–839. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, L.; Duan, Z.; Qi, R.; Li, Y.; Lang, Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2008, 43, 278–284. [Google Scholar] [CrossRef]
- Blinova, I.; Ivask, A.; Heinlaan, M.; Mortimer, M.; Kahru, A. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut. 2010, 158, 41–47. [Google Scholar] [CrossRef]
- Abbasalipourkabir, R.; Moradi, H.; Zarei, S.; Asadi, S.; Salehzadeh, A.; Ghafourikhosroshahi, A.; Mortazavi, M.; Ziamajidi, N. Toxicity of zinc oxide nanoparticles on adult male wistar rats. Food Chem. Toxicol. 2015, 84, 154–160. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, P.; Pandey, A.K.; Dhawan, A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res. 2012, 745, 84–91. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, C.; Chen, X.; Yang, Z. Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem. Toxicol. 2016, 90, 76–83. [Google Scholar] [CrossRef]
- Banyal, S.; Malik, P.; Tuli, H.S.; Mukherjee, T.K. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr. Opin. Pulm. Med. 2013, 19, 289–297. [Google Scholar] [CrossRef]
- Sharma, V.; Shukla, R.K.; Saxena, N.; Parmar, D.; Das, M.; Dhawan, A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 2009, 185, 211–218. [Google Scholar] [CrossRef]
- Esmaeillou, M.; Moharamnejad, M.; Hsankhani, R.; Tehrani, A.A.; Maadi, H. Toxicity of ZnO nanoparticles in healthy adult mice. Environ. Toxicol. Pharmacol. 2013, 35, 67–71. [Google Scholar] [CrossRef]
- Boubeta, C.M.; Bacells, L.; Cristofol, R.; Sanfeliu, C.; Rodriguez, E.; Weissleder, R.; Piedrafita, S.; Simeonidis, K.; Angelakeris, M.; Sandiumenge, F.; et al. Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine 2010, 6, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Di, D.R.; He, Z.Z.; Sun, Z.Q.; Liu, J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine 2012, 8, 1233–1241. [Google Scholar] [CrossRef]
- Jin, T.; He, Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res. 2011, 13, 6877–6885. [Google Scholar] [CrossRef]
- Mangalampalli, B.; Dumala, N.; Grover, P. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats. Regul. Toxicol. Pharmacol. 2017, 90, 170–184. [Google Scholar] [CrossRef]
- Ghobadian, M.; Nabiuni, M.; Parivar, K.; Fathi, M.; Pazooki, J. Toxic effects of magnesium oxide nanoparticles on earlydevelopmental and larval stages of zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2015, 122, 260–267. [Google Scholar] [CrossRef]
- Zhang, J.D.; Yang, M.J.; Zhu, Y.R.; Yang, H. Synthesis and characterization of crosslinkable latex with interpenetrating network structure based on polystyrene and polyacrylate. Polym. Int. 2006, 55, 951–960. [Google Scholar] [CrossRef]
- Kessel, N.; Illsley, D.R.; Keddie, J.L. The diacetone acrylamide crosslinking reaction and its influence on the film formation of an acrylic latex. J. Coat. Technol. Res. 2008, 5, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Fox, T.G.; Flory, P.J. 2nd-Order transition temperatures and related properties of polystyrene. 1. Influence of lecular weight. J. Appl. Phys. 1950, 21, 581–591. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 1943, 11, 521–526. [Google Scholar] [CrossRef]
- Tobing, S.; Klein, A. Molecular parameters and their relation to the adhesive performance of acrylic pressure-sensitive adhesives. J. Appl. Polym. Sci. 2001, 79, 2230–2244. [Google Scholar] [CrossRef]
- Vandenburg, H.J.; Clifford, A.A.; Bartle, K.D.; Carlson, R.E.; Caroll, J.; Newton, I.D. A simple solvent selection method accelerated solvent extraction of additives from polymers. Analyst 1999, 124, 1707–1710. [Google Scholar] [CrossRef]
- Leitner, J.; Sedmidubský, D. Preparation, properties and utilization of nanostructured ZnO. Chem. Listy 2016, 110, 406–417. [Google Scholar]
- Balducci, G.; Diaz, L.B.; Gregory, D.H. Recent progress in the synthesis of nanostructured magnesium hydroxide. CrystEngComm 2017, 19, 6067–6084. [Google Scholar] [CrossRef] [Green Version]
- Pi, P.; Wang, W.; Wen, X.; Xu, S.; Cheng, J. Synthesis and characterization of low-temperature self-crosslinkable acrylic emulsion for PE film ink. Prog. Org. Coat. 2015, 81, 66–71. [Google Scholar] [CrossRef]
- Tsavalas, J.G.; Sundberg, D.C. Hydroplasticization of polymers: Model predictions and application to emulsion polymers. Langmuir 2010, 26, 6960–6966. [Google Scholar] [CrossRef]
- Jiang, B.; Tsavalas, J.G.; Sundberg, D.C. Water whitening of polymer films: Mechanistic studies and comparison between water and solvent borne films. Prog. Org. Coat. 2017, 105, 56–66. [Google Scholar] [CrossRef]
- Richard, J.; Maquet, J. Dynamic micromechanical investigations into particle/particle interfaces in latex films. Polymer 1992, 33, 4164–4173. [Google Scholar] [CrossRef]
- Zosel, A. Mechanical properties of films from polymer lattices. Polym. Adv. Technol. 2003, 6, 263–269. [Google Scholar] [CrossRef]
- Horský, J.; Quadrat, O.; Porsch, B.; Mrkvičková, L.; Šňupárek, J. Effect of alkalinization on carboxylated latices prepared with various amount of a non-ionogenic hydrophilic comonomer 2-hydroxyethyl methacrylate. Colloids Surf. A Physicochem. Eng. Asp. 2001, 180, 75–85. [Google Scholar] [CrossRef]
- Ruckerova, A.; Machotova, J.; Svoboda, R.; Pukova, K.; Bohacik, P.; Valka, R. Ambient temperature self-crosslinking latices using low generation PAMAM dendrimers as inter-particle crosslinking agents. Prog. Org. Coat. 2019, 119, 91–98. [Google Scholar] [CrossRef]
- Machotova, J.; Ruckerova, A.; Bohacik, P.; Pukova, K.; Kalendova, A.; Palarcik, J. High-performance one-pack ambient cross-linking latex binders containing low-generation PAMAM dendrimers and ZnO nanoparticles. J. Coat. Technol. Res. 2018, 15, 1167–1179. [Google Scholar] [CrossRef]
Reactor Charge (g) | First Step Monomer Emulsion (g) | Second Step Monomer Emulsion (g) | |
---|---|---|---|
Water | 70 | 75 | 125 |
Disponil FES 993 | 0.5 | 7.4 | 7.4 |
Ammonium persulfate | 0.4 | 0.4 | 0.4 |
Monomer mixture | – | 100 | 100 |
Inorganic nanoparticles | – | – | 0–4 |
Sample | Charge of Nanoparticles (wt %) 1 | Coagulum Content (wt %) 2 | pH 2 | MFFT (°C) 3 |
---|---|---|---|---|
L0 | 0 | 0.4 ± 0.08 | 2.21 ± 0.04 | 8.2 ± 0.25 |
LZnO-0.5 | 0.5 | 0.5 ± 0.12 | 5.70 ± 0.09 | 10.4 ± 0.12 |
LZnO-1.0 | 1.0 | 0.6 ± 0.16 | 6.03 ± 0.06 | 11.2 ± 0.20 |
LZnO-1.5 | 1.5 | 0.8 ± 0.21 | 6.11 ± 0.08 | 12.6 ± 0.26 |
LZnO-2.0 | 2.0 | 1.1 ± 0.27 | 6.24 ± 0.11 | 13.8 ± 0.21 |
LMgO-0.5 | 0.5 | 1.0 ± 0.32 | 7.20 ± 0.12 | 4.7 ± 0.31 |
LMgO-1.0 | 1.0 | 2.4 ± 0.21 | 8.38 ± 0.23 | 2.8 ± 0.14 |
LMgO-1.5 | 1.5 | 5.0 ± 0.59 | 10.19 ± 0.25 | 2.0 ± 0.26 |
LMgO-2.0 | 2.0 | 9.1 ± 0.72 | 10.29 ± 0.15 | 1.5 ± 0.14 |
Nanoparticle Type | Original State | Final State | ||||||
---|---|---|---|---|---|---|---|---|
Zn (g/kg) | Mg (g/kg) | S (g/kg) | Remainder (g/kg) 1 | Zn (g/kg) | Mg (g/kg) | S (g/kg) | Remainder (g/kg) 1 | |
ZnO | 798.0 ± 0.11 | 0 | 0.07 ± 0.05 | 291.93 ± 0.11 | 655.0 ± 0.11 | 0 | 41.10 ± 0.105 | 303.90 ± 0.11 |
MgO | 0 | 570.0 ± 0.09 | 0.15 ± 0.07 | 429.85 ± 0.09 | 0 | 406.0 ± 0.11 | 8.68 ± 0.05 | 585.32 ± 0.11 |
Nanoparticle Type | Original State | Final State | ||||
---|---|---|---|---|---|---|
Oxide (wt %) | Hydroxide (wt %) | Sulfate (wt %) | Oxide (wt %) | Hydroxide (wt %) | Sulfate (wt %) | |
ZnO | 96.4 | 3.6 | ~0 | 34.0 | 45.3 | 20.7 |
MgO | 82.6 | 17.3 | ~0 | ~0 | 96.7 | 3.3 |
Sample | Theoretical Content of Nanoparticles (wt %) 1 | Metal Content (mg/kg) | Real Content of Nanoparticles (wt %) 2 | Tg (°C) | Gel Content (wt %) | Mc (g/mol) | Crosslink Density (moles/cm3) |
---|---|---|---|---|---|---|---|
L0 | 0 | 0 | 0 | 15.0 ± 0.24 | 75.0 ± 2.2 | 111,365 ± 3849 | 1.00 × 10−5 |
LZnO-0.5 | 0.5 | 3752 ± 31 | 0.47 ± 0.003 | 13.6 ± 0.28 | 88.8 ± 1.9 | 27,462 ± 2750 | 4.04 × 10−5 |
LZnO-1.0 | 1.0 | 6120 ± 65 | 0.76 ± 0.008 | 13.3 ± 0.16 | 90.6 ± 1.2 | 24,308 ± 1452 | 4.57 × 10−5 |
LZnO-1.5 | 1.5 | 7122 ± 49 | 0.89 ± 0.005 | 13.9 ± 0.31 | 91.1 ± 2.3 | 23,231 ± 31098 | 4.78 × 10−5 |
LZnO-2.0 | 2.0 | 8741 ± 75 | 1.09 ± 0.009 | 14.2 ± 0.27 | 92.2 ± 0.9 | 22,104 ± 1220 | 5.02 × 10−5 |
LMgO-0.5 | 0.5 | 2851 ± 25 | 0.47 ± 0.004 | 11.7 ± 0.45 | 90.1 ± 1.8 | 16,508 ± 954 | 6.79 × 10−5 |
LMgO-1.0 | 1.0 | 4931 ± 30 | 0.82 ± 0.005 | 8.3 ± 0.32 3 | 92.9 ± 2.4 | 9893 ±556 | 1.13 × 10−4 |
LMgO-1.5 | 1.5 | 6339 ± 42 | 1.07 ± 0.007 | 5.6 ± 0.61 3 | 94.7 ± 1.6 | 9620 ± 249 | 1.16 × 10−4 |
LMgO-2.0 | 2.0 | 6574 ± 90 | 1.09 ± 0.015 | 4.0 ± 0.47 3 | 95.6 ± 1.9 | 9220 ± 276 | 1.21 × 10−4 |
Same Day of Synthesis | After Storage | |||||
---|---|---|---|---|---|---|
Sample | Particle Size (nm) | Zeta Potential (mV) | Viscosity (mPa.s) | Particle Size (nm) | Zeta Potential (mV) | Viscosity (mPa.s) |
L0 | 103.4 ± 0.4 | −39.5 ± 1.0 | 19.3 ± 0.15 | 104.7 ± 0.7 | −42.7 ± 1.3 | 20.8 ± 0.14 |
LZnO-0.5 | 98.4 ± 0.9 | −38.2 ± 0.5 | 25.4 ± 0.43 | 98.8 ± 1.4 | −40.4 ± 2.7 | 21.6 ± 0.56 |
LZnO-1.0 | 92.9 ± 0.6 | −35.6 ± 1.2 | 31.9 ± 0.28 | 94.0 ± 0.8 | −38.9 ± 0.9 | 27.5 ± 0.20 |
LZnO-1.5 | 87.7 ± 0.8 | −34.0 ± 1.1 | 24.2 ± 0.36 | 88.3 ± 0.9 | −36.7 ± 2.6 | 31.3 ± 0.34 |
LZnO-2.0 | 98.8 ± 1.1 | −33.5 ± 0.9 | 28.7 ± 0.11 | 99.5 ± 1.2 | −39.5 ± 2.1 | 33.5 ± 0.08 |
LMgO-0.5 | 121.3 ± 0.7 | −32.2 ± 0.8 | 21.2 ± 0.33 | 122.9 ± 1.1 | −30.5 ± 0.5 | 23.2 ± 0.38 |
LMgO-1.0 | 150.3 ± 1.2 | −31.0 ± 0.5 | 31.3 ± 0.22 | 156.3 ± 0.9 | −27.8 ± 0.6 | 34.3 ± 0.32 |
LMgO-1.5 | 155.7 ± 1.3 | −29.4 ± 1.0 | 38.9 ± 0.26 | 163.5 ± 1.2 | −28.1 ± 0.8 | 40.0 ± 0.29 |
LMgO-2.0 | 161.1 ± 1.4 | −29.0 ± 1.1 | 44.2 ± 0.43 | 167.6 ± 1.5 | −26.9 ± 0.7 | 46.1 ± 0.37 |
Sample | Thickness (µm) | Transmittance (%) 1 | Gloss 60° (GU) | Initial Hardness (%) 2 | Final Hardness (%) 3 | Adhesion (Degree of Flaking) | Impact Resistance (cm) | MEK Resistance (Number of Strikes) |
---|---|---|---|---|---|---|---|---|
L0 | 61.5 ± 5.8 | 90.8 ± 0.26 | 82.4 ± 0.4 | 28.7 ± 0.6 | 33.5 ± 0.7 | 0 4 | above 100 4 | 28 ± 1.5 |
LZnO-0.5 | 58.1 ± 8.3 | 90.6 ± 0.33 | 83.8 ± 0.9 | 27.4 ± 0.4 | 29.6 ± 0.7 | 0 | above 100 | 200 ± 2. |
LZnO-1.0 | 55.2 ± 6.7 | 90.3 ± 0.17 | 82.9 ± 0.5 | 27.7 ± 0.5 | 30.0 ± 1.0 | 0 | above 100 | above 300 4 |
LZnO-1.5 | 53.5 ± 7.1 | 90.7 ± 0.34 | 81.2 ± 0.6 | 28.9 ± 0.4 | 31.2 ± 0.5 | 0 | above 100 | above 300 |
LZnO-2.0 | 58.8 ± 8.6 | 91.0 ± 0.22 | 83.7 ± 0.3 | 30.4 ± 0.6 | 33.2 ± 0.8 | 0 | above 100 | above 300 |
LMgO-0.5 | 60.2 ± 7.4 | 90.9 ± 0.44 | 83.0 ± 0.3 | 18.7 ± 0.8 | 22.9 ± 1.1 | 0 | above 100 | 215 ± 3 |
LMgO-1.0 | 60.5 ± 6.3 | 91.0 ± 0.36 | 82.4 ± 1.1 | 13.7 ± 0.7 | 15.0 ± 0.7 | 0 | above 100 | above 300 |
LMgO-1.5 | 57.7 ± 8.0 | 90.7 ± 0.17 | 81.7 ± 0.4 | 12.2 ± 0.4 | 14.1 ± 0.5 | 0 | above 100 | above 300 |
LMgO-2.0 | 48.3 ± 5.0 | 90.6 ± 0.34 | 82.6 ± 1.0 | 11.0 ± 0.2 | 13.2 ± 0.3 | 0 | above 100 | above 300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machotová, J.; Kalendová, A.; Zlámaná, B.; Šňupárek, J.; Palarčík, J.; Svoboda, R. Waterborne Coating Binders Based on Self-Crosslinking Acrylic Latex with Embedded Inorganic Nanoparticles: A Comparison of Nanostructured ZnO and MgO as Crosslink Density Enhancing Agents. Coatings 2020, 10, 339. https://doi.org/10.3390/coatings10040339
Machotová J, Kalendová A, Zlámaná B, Šňupárek J, Palarčík J, Svoboda R. Waterborne Coating Binders Based on Self-Crosslinking Acrylic Latex with Embedded Inorganic Nanoparticles: A Comparison of Nanostructured ZnO and MgO as Crosslink Density Enhancing Agents. Coatings. 2020; 10(4):339. https://doi.org/10.3390/coatings10040339
Chicago/Turabian StyleMachotová, Jana, Andréa Kalendová, Barbora Zlámaná, Jaromír Šňupárek, Jiří Palarčík, and Roman Svoboda. 2020. "Waterborne Coating Binders Based on Self-Crosslinking Acrylic Latex with Embedded Inorganic Nanoparticles: A Comparison of Nanostructured ZnO and MgO as Crosslink Density Enhancing Agents" Coatings 10, no. 4: 339. https://doi.org/10.3390/coatings10040339
APA StyleMachotová, J., Kalendová, A., Zlámaná, B., Šňupárek, J., Palarčík, J., & Svoboda, R. (2020). Waterborne Coating Binders Based on Self-Crosslinking Acrylic Latex with Embedded Inorganic Nanoparticles: A Comparison of Nanostructured ZnO and MgO as Crosslink Density Enhancing Agents. Coatings, 10(4), 339. https://doi.org/10.3390/coatings10040339