Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fundamentals of Thermal Transport in Metals and Dielectrics
3.2. Structure of the Multilayer Coatings Revealed by Rutherford Back-Scattering
3.3. Thermal Conductivity of Multilayer Coatings and Interfaces
3.4. Electronic Structure and Features of Plasmon and Phonon Propagation in Al2O3/Ag Multilayer Coatings
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mosquera, A.A.; Horvat, D.; Rashkovskiy, A.; Kovalev, A.; Miska, P.; Wainstein, D.; Allbella, J.; Endrino, J.L. Exciton and core-level electron confinement effects in transparent ZnO thin films. Sci. Rep. 2013, 3, 1714. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, X.; Yin, P.; Gao, F. Size-Dependent Raman Shifts for nanocrystals. Sci. Rep. 2016, 6, 20539. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Liu, Y. Plasmonic metamaterials. Nanotech. Rev. 2014, 3, 177–210. [Google Scholar] [CrossRef]
- Sun, J.; Shalaev, M.I.; Litchinitser, N.M. Experimental demonstration of a non-resonant hyperlens in the visible spectral range. Nat. Commun. 2015, 6, 7201. [Google Scholar] [CrossRef]
- Callebaut, H.; Kumar, S.; Williams, B.S.; Hua, Q.; Reno, J.L. Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers. Appl. Phys. Lett. 2004, 84, 645–647. [Google Scholar] [CrossRef]
- Shen, X.; Cui, T. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett. 2013, 102, 211909. [Google Scholar] [CrossRef]
- Tian, Z.; Esfarjani, K.; Shiomi, J.; Henry, A.S.; Chen, G. On the importance of optical phonons to thermal conductivity in nanostructures. Appl. Phys. Lett. 2011, 99, 053122. [Google Scholar] [CrossRef]
- Kargar, F.; Ramirez, S.; Debnath, B.; Malekpour, H.; Lake, R.; Balandin, A.A. Acoustic Phonon Spectrum and Thermal transport in Nanoporous Alumina Arrays. Appl. Phys. Lett. 2015, 107, 171904. [Google Scholar] [CrossRef]
- Toberer, E.S.; Baranowski, L.L.; Dames, C. Advances in thermal conductivity. Annu. Rev. Mater. Res. 2012, 42, 179–209. [Google Scholar] [CrossRef]
- Cahill, D.G. Nanoscale thermal transport. Appl. Phys. Rev. 2014, 1, 011305. [Google Scholar] [CrossRef]
- Balandin, A.A.; Denis, L.N. Phononics in low-dimensional materials. Mater. Today 2012, 15, 266–275. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2015, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K. High-performance bulk thermoelectrics with all-scale hierarchical structures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Oraizi, H.; Abdolali, A. Design and optimization of planar multilayer antireflection metamaterial coatings at KU band under circularly polarized oblique plane wave incidence. Prog. Electromagn. Res. C 2008, 3, 1–18. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, G.; Li, B. Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires. Nano Lett. 2012, 12, 2826–2832. [Google Scholar] [CrossRef][Green Version]
- Moldovan, M. Phonon wave interference and thermal bandgap materials. Nat. Mater. 2015, 14, 667–674. [Google Scholar] [CrossRef]
- Chou, Y.-H.; Wu, Y.; Hong, K.-B.; Chou, B.-T.; Shih, J.-H.; Chung, Y.-C.; Chen, P.-Y.; Lin, T.-R.; Lin, C.-C.; Lin, S.-D.; et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett. 2016, 16, 3179–3186. [Google Scholar] [CrossRef]
- Ordonez-Miranda, J.; Tranchant, L.; Chalopin, Y.; Antoni, T.; Volz, S. Thermal conductivity of nano-layered systems due to surface phonon-polaritons. Journ. Appl. Phys. 2015, 115, 054311. [Google Scholar] [CrossRef]
- Chen, D.Z.A.; Narayanaswamy, A.; Chen, G. Enhancement of in-plane thermal conductivity of thin films via surface phonon-polaritons. Proceedings of IMECE2005 ASME International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–11 November, 2005; pp. 841–846. [Google Scholar]
- Kovalev, A.I.; Wainstein, D.L.; Rashkovskiy, A.Y.; Osherov, A.; Golan, Y. Size shift of XPS lines observed from PbS nanocrystals. Surf. Interf. Anal. 2010, 42, 850–854. [Google Scholar] [CrossRef]
- Kovalev, A.I.; Wainshtein, D.L.; Rashkovskiy, A.Y.; Golan, Y.; Osherov, A.; Ashkenazy, N. Studying of Quantum-Size Effects Origination in Semiconducting Lead Sulfide Nanocrystals. Protect. Met. Phys. Chem. Surf. 2010, 46, 633–638. [Google Scholar] [CrossRef]
- Kovalev, A.; Wainstein, D.; Rashkovskiy, A.; Golan, Y.; Osherov, A.; Ashkenasi, N. Complex investigation of electronic structure transformations in Lead Sulfide nanoparticles using a set of electron spectroscopy techniques. Vacuum 2012, 86, 638–642. [Google Scholar] [CrossRef]
- Wainstein, D.L.; Kovalev, A.I. Regularities of electronic structure transformations in nanomaterials with decreasing their characteristic size. J. Phys. Conf. Ser. 2017, 857, 012055. [Google Scholar] [CrossRef]
- Kovalev, A.I.; Wainstein, D.L.; Rashkovskiy, A.Y.; Gago, R.; Soldera, F.; Endrino, J.L.; Fox-Rabinovich, G.S. Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial. J. Nanomat. 2015, 2015, 231–240. [Google Scholar] [CrossRef]
- Kovalev, A.I.; Rashkovskiy, A.Y.; Wainstein, D.L.; Gago, R.; Soldera, F.; Endrino, J.L. Influence of electronic structure, plasmon-phonon and plasmon-polariton excitations on anomalously low heat conductivity in TiAlN/Ag nanoscale multilayer coatings. Curr. Appl. Phys. 2016, 16, 459–468. [Google Scholar] [CrossRef]
- Kovalev, A.I.; Wainstein, D.L.; Rashkovskiy, A.Y.; Gago, R.; Soldera, F.; Endrino, J.L. The confinement of phonon propagation in TiAlN/Ag multilayer coatings with anomalously low heat conductivity. Appl. Phys. Lett. 2016, 108, 223106. [Google Scholar] [CrossRef]
- Gago, R.; Soldera, F.; Huebner, R.; Lehmann, J.; Munnik, F.; Vázquez, L.; Redondo-Cubero, A.; Endrino, J.L. X-ray absorption near-edge structure of hexagonal ternary phases in sputter-deposited TiAlN films. J. Alloys Compd. 2013, 561, 87–94. [Google Scholar] [CrossRef]
- Mayer, M. SIMNRA User’s Guide 6.05; Max-Planck-Institut für Plasmaphysik: Garching, Germany, 2009. [Google Scholar]
- Cahill, D.G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 2004, 75, 5119–5122. [Google Scholar] [CrossRef]
- Josell, D.; Bonevich, J.E.; Nguyen, T.M.; Johnson, R.N. Heat transfer through nanoscale multilayered thermal barrier coatings at elevated temperatures. Surf. Coat. Tech. 2015, 275, 75. [Google Scholar] [CrossRef]
- Jain, A.; McGaughey, A.J.H. Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles, Supplementary Information. Phys. Rev. B 2016, 93, 081206. [Google Scholar] [CrossRef]
- Majumdar, A. Microscale heat conduction in dielectric thin films. ASME HTD 1991, 184, 34–41. [Google Scholar] [CrossRef]
- Jennifer Su, Y.; Wang, H.; Porter, W.D.; De Arellano Lopez, A.R.; Faber, K.T. Thermal conductivity and phase evolution of plasma-sprayed multilayer coatings. J. Mater. Sci. 2001, 36, 3511–3518. [Google Scholar]
- Luo, Z.; Liu, H.; Feng, Y.; Ye, P.; Chen, Y.; Xu, X. In-plane thermal conductivity of ultra-thin Al2O3 films measured by Micro-Raman. In Proceedings of the ASME 2013 Heat Transfer Summer Conference HT2013, Minneapolis, MN, USA, 14–19 July 2013; pp. HT2013–17170. [Google Scholar]
- Stark, I.; Stordeur, M.; Syrowatka, F. Thermal conductivity of thin amorphous alumina films. Thin Solid Films 1993, 226, 185–190. [Google Scholar] [CrossRef]
- Cappella, A.; Battaglia, J.-L.; Schick, V.; Kusiak, A.; Lamperti, A.; Wiemer, C.; Hay, B. High temperature thermal conductivity of amorphous Al2O3 thin films grown by low temperature ALD. Adv. Eng. Mater. 2013, 15, 9999. [Google Scholar] [CrossRef]
- Heino, P.; Ristolainen, E. Thermal conduction at the nanoscale in some metals by MD. Microelectron. J. 2003, 34, 773–777. [Google Scholar] [CrossRef]
- Ryu, S.; Juhng, W.; Kim, Y. Effect of microstructure on thermal conductivity of Cu, Ag thin films. J. Nanosci. Nanotechnol. 2010, 10, 3406–3411. [Google Scholar] [CrossRef]
- Cocemasov, A.I.; Nika, D.L.; Fomin, V.M.; Grimm, D.; Schmidt, O.G. Phonon-engineered thermal transport in Si wires with constant and periodically modulated cross-sections: A crossover between nano- and microscale regimes. Appl. Phys. Lett. 2015, 107, 011904. [Google Scholar] [CrossRef]
- Perevalov, T.V.; Shaposhnikov, A.V.; Gritsenko, V.A.; Wong, H.; Han, J.H.; Kim, C.W. Electronic structure of α- Al2O3: Ab initio simulations and comparison with experiment. JETP Lett. 2007, 85, 165–168. [Google Scholar] [CrossRef]
- Liu, D.M.; Tuan, W.H. Microstructure and thermal conduction properties Al2O3-Ag composites. Acta mater. 1996, 44, 813–818. [Google Scholar] [CrossRef]
- Mousavi, S.J.; Abolhassani, M.R.; Hosseini, S.M.; Sebt, S.A. Comparison of electronic and optical properties of the α and κ phases of alumina using density functional theory. Chin. J. Phys. 2009, 47, 862–873. [Google Scholar]
- Yazdanmehr, M.; Asadabadi, S.J.; Nourmohammadi, A.; Ghasemzadeh, M.; Rezvanian, M. Electronic structure and bandgap of γ-Al2O3 compound using mBJ exchange potential. Nanoscale Res. Lett. 2012, 7, 488. [Google Scholar] [CrossRef]
- Bialas, H.; Stolz, H.J. Lattice dynamics of sapphire (corundum). Part I: Phonon dispersion by inelastic neutron scattering. Z. Physik B 1975, 21, 319–324. [Google Scholar] [CrossRef]
- Zhu, K.-R.; Zhang, M.-S.; Chen, Q.; Yin, Z. Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A 2005, 340, 220–227. [Google Scholar] [CrossRef]
- Henrique, T.M.C.; Baltar, M.; Drozdowicz-Tomsia, K.; Goldys, E.M. Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films. In Plasmonics-Principles and Applications; Kim, Y., Ed.; InTech: Moscow, Ruassia, 2012. [Google Scholar]
- Nelayah, J.; Kociak, M.; Stéphan, O.; Javier García de Abajo, F.; Tencé, M.; Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Colliex, C. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 2007, 3, 348–353. [Google Scholar] [CrossRef]
- Singh, K.; Hammond, S.N.A. Current-voltage characteristics and photoresponse of metal-metal devices. Turk. J. Phys. 1998, 22, 315. [Google Scholar]
- Zhang, P. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions. Sci. Rep. 2015, 5, 9826. [Google Scholar] [CrossRef]











| Sample Code | Al2O3 Single Layer Thickness, nm | Ag Single Layer Thickness, nm | Number of Al2O3/Ag Bilayers | Total Thickness, nm |
|---|---|---|---|---|
| 5/40 | 40 | 5 | 4 | 180 |
| 2/40 | 40 | 2 | 4 | 168 |
| 4/20 | 20 | 4 | 7 | 168 |
| 1/8 | 8 | 1 | 7 | 63 |
| 2/24 | 24 | 2 | 2 | 52 |
| 5/24 | 24 | 5 | 2 | 58 |
| 200 | 200 | 0 | 1 | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalev, A.; Wainstein, D.; Vakhrushev, V.; Gago, R.; Endrino, J.L. Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations. Coatings 2020, 10, 260. https://doi.org/10.3390/coatings10030260
Kovalev A, Wainstein D, Vakhrushev V, Gago R, Endrino JL. Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations. Coatings. 2020; 10(3):260. https://doi.org/10.3390/coatings10030260
Chicago/Turabian StyleKovalev, Anatoly, Dmitry Wainstein, Vladimir Vakhrushev, Raul Gago, and Jose Luis Endrino. 2020. "Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations" Coatings 10, no. 3: 260. https://doi.org/10.3390/coatings10030260
APA StyleKovalev, A., Wainstein, D., Vakhrushev, V., Gago, R., & Endrino, J. L. (2020). Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations. Coatings, 10(3), 260. https://doi.org/10.3390/coatings10030260

