Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Granite and Sub-Aerial Biofilm (SAB)
2.2. Laser Cleaning
2.3. Analytical Techniques
- Stereomicroscopy using an SMZ800 NIKON® was firstly used to characterize the surfaces treated with the different conditions (Table 1).
- The color of the reference granite surface and the laser-treated surfaces was measured with a Minolta CM-700d spectrophotometer. Color was characterized in the CIELAB and CIELCH color spaces [32,33]. A total of 15 random measurements were taken for each surface in order to obtain statistically representative results [34]. Measurements were taken in specular component included (SCI) mode, with a spot diameter of 8 mm, using illuminant D65 at a viewing angle of 10°. The color parameters measured were L*, lightness which varies from 0 (absolute black) to 100 (absolute white); a*, showing color changes in the red–green range (+a*: red and −a*: green); and b*, related to changes in the yellow–blue range (+b*: yellow and −b*: blue). Moreover, 2 angular parameters were measured: C*ab, chroma or saturation, related to the intensity of color; and hab, hue or tone of color, which refers to the dominant wavelength indicating redness, yellowness, greenness or blueness on a circular scale. In order to evaluate the cleaning effectiveness, color data were processed as color differences (ΔL*, Δa*, Δb*, ΔC*ab, ΔH*) and global color change (ΔE*ab) between the reference uncoated granite and the laser-treated surfaces. Global color change (ΔE*ab) was computed as follows [33]:ΔE*ab = [(ΔL*)2 + (Δa*)2+ (Δb*)2]1/2
- Fourier transform infrared spectroscopy (FTIR) data in micro mode were collected from the reference granite, the SAB and the laser-treated surfaces using a FTIR Thermo Nicolet® Continuμm. The FTIR spectra were recorded in reflectance mode in the 4000–400 cm−1 region, with 4 cm−1 resolution.
- The organic material before and after laser ablation was investigated with pyrolysis-gas chromatography/mass spectrometry (PY-GC/MS) using a Multi-Shot Pyrolyzer EGA/PY-3030D micro-furnace (Frontier Lab), coupled on-line with an Agilent Technologies (USA) 6890/5973 Gas Chromatography/Mass Selective Detector system. The experiments were conducted by inserting the sample (approximately 0.5 mg) into a stainless steel cup, and after adding 5 μL of hexamethyldisilazane as derivatization agent, performing the pyrolysis with a furnace temperature of 550 °C (for 60 s) and an interface temperature of 180 °C. The conditions for the gas chromatograph and the mass spectrometer are reported in literature [35].
- Then, C-coated 1 cm × 1 cm × 0.5 cm-scales of the laser-treated surfaces were visualized under SEM in SE and BSE modes using a Philips XL30 with EDS. Optimal conditions were the same as those reported for the granite characterization.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fotakis, C.; Anglos, D.; Zafiropoulos, V.; Georgiou, S.; Tornari, V. Lasers in the Preservation of Cultural Heritage: Principles and Applications; Taylor & Francis: London, UK, 2006. [Google Scholar]
- Siano, S. Principles of Laser Cleaning in Conservation; Schreiner, M., Strlic, M., Salimbeni, R., Eds.; COST Office: Brussels, Belgium, 2008; e-version ISBN-10: 973 88109 30. [Google Scholar]
- Pouli, P.; Papakonstantinou, E.; Frantzikinaki, K.; Panou, A.; Frantzi, G.; Vasiliadis, C.; Fotakis, C. The two-wavelength laser cleaning methodology; theoretical background and examples from its application on CH objects and monuments with emphasis to the Athens Acropolis sculptures. Herit. Sci. 2016, 4, 238. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M. (Ed.) Laser Cleaning in Conservation: An Introduction; Butterworth Heinemann: Oxford, United Kingdom, 1998; ISBN-10: 0750631171. [Google Scholar]
- Asmus, J.F.; Munk, W.H.; Wuerker, R.F. Lasers and Holography in Art Preservation and Restoration. In Proceedings of the IEEE Northeast Electronics Research and Engineering Meeting, Boston, FL, USA, 5–9 November 1972. [Google Scholar]
- DeCruz, A.; Wolbarsht, M.L.; Andreotti, A.; Colombini, M.P.; Pinna, D.; Culberson, C.F. Investigation of the Er:YAG Laser at 2.94 μm to Remove Lichens Growing on Stone. Stud. Conserv. 2009, 54, 268–277. [Google Scholar] [CrossRef]
- Pouli, P.; Oujja, M.; Castillejo, M. Practical issues in laser cleaning of stone and painted artefacts: Optimisation procedures and side effects. Appl. Phys. A 2011, 106, 447–464. [Google Scholar] [CrossRef]
- Brea, T.R.; Pozo, S.; Fiorucci, M.P.; López, A.; Ramil, A.; Pozo-Antonio, J. Nd:YVO4 laser removal of graffiti from granite. Influence of paint and rock properties on cleaning efficacy. Appl. Surf. Sci. 2012, 263, 563–572. [Google Scholar]
- Rivas, T.; Pozo-Antonio, J.; De Silanes, M.L.; Ramil, A.; López, A. Laser versus scalpel cleaning of crustose lichens on granite. Appl. Surf. Sci. 2018, 440, 467–476. [Google Scholar] [CrossRef]
- Pozo, S.; Barreiro, P.; Brea, T.R.; González, P.; Fiorucci, M.P.; Pozo-Antonio, J. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser. Appl. Surf. Sci. 2014, 302, 309–313. [Google Scholar] [CrossRef]
- Sanz, M.; Oujja, M.; Ascaso, C.; Pérez-Ortega, S.; Souza-Egipsy, V.; Fort, R.; Rios, A.D.L.; Wierzchos, J.; Cañamares, M.; Castillejo, M. Influence of wavelength on the laser removal of lichens colonizing heritage stone. Appl. Surf. Sci. 2017, 399, 758–768. [Google Scholar] [CrossRef] [Green Version]
- Prieto, B.; Silva, B. Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int. Biodeterior. Biodegrad. 2005, 56, 206–215. [Google Scholar] [CrossRef]
- Warscheid, T.; Braams, J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Mohammadi, P.; Krumbein, W.E. Biodeterioration of ancient stone materials from the Persepolis monuments (Iran). Aerobiologia 2008, 24, 27–33. [Google Scholar] [CrossRef]
- Doehne, C.A.; Price, E. Stone Conservation: An Overview of Current Research, 2nd ed.; The Getty Conservation Institute: Los Ángeles, CA, USA, 2010; 176p. [Google Scholar]
- Pozo-Antonio, J.; Rivas, T.; López, A.; Fiorucci, M.; Ramil, A. Effectiveness of granite cleaning procedures in cultural heritage: A review. Sci. Total. Environ. 2016, 571, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Pozo, S.; Montojo, C.; Rivas, T.; López, A.; Fiorucci, M.P.; De Silanes, M.E.L. Comparison between Methods of Biological Crust Removal on Granite. Key Eng. Mater. 2013, 548, 317–325. [Google Scholar] [CrossRef]
- López, A.; Brea, T.R.; Lamas, J.; Ramil, A.; Yáñez, A. Optimisation of laser removal of biological crusts in granites. Appl. Phys. A 2010, 100, 733–739. [Google Scholar] [CrossRef]
- Marakis, G.; Pouli, P.; Zafiropulos, V.; Maravelaki-Kalaitzaki, P. Comparative study on the application of the 1st and the third harmonic of a Q-switched Nd:YAG laser system to clean black encrustation on marble. J. Cult. Herit. 2003, 4, 83–91. [Google Scholar] [CrossRef]
- Rodrigues, J.D.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S. Laser ablation of iron-rich black films from exposed granite surfaces. Appl. Phys. A 2014, 117, 365–370. [Google Scholar] [CrossRef]
- Ramil, A.; Pozo-Antonio, J.; Fiorucci, M.P.; López, A.; Brea, T.R. Detection of the optimal laser fluence ranges to clean graffiti on silicates. Constr. Build. Mater. 2017, 148, 122–130. [Google Scholar] [CrossRef]
- Urones-Garrote, E.; López, A.; Ramil, A.; Otero-Díaz, L.C. Microstructural study of the origin of color in Rosa Porriño granite and laser cleaning effects. Appl. Phys. A 2011, 104, 95–101. [Google Scholar] [CrossRef]
- Ramil, A.; López, A.J.; Mateo, M.P.; Álvarez, C.; Yáñez, A. Color changes in Galician granitic stones induced by UV Nd:YAG laser irradiation. In Lasers in the Conservation of Artworks; CRC Press: Boca Raton, FL, USA, 2008; pp. 199–202. [Google Scholar]
- Esbert, R.; Grossi, C.; Rojo, A.; Alonso, F.; Montoto, M.; Ordaz, J.; De Andrés, M.P.; Escudero, C.; Barrera, M.; Sebastián, E.; et al. Application limits of Q-switched Nd:YAG laser irradiation for stone cleaning based on colour measurements. J. Cult. Herit. 2003, 4, 50–55. [Google Scholar] [CrossRef]
- Zafiropulos, V.; Balas, C.; Manousaki, A.; Marakis, Y.; Maravelaki, P.N.; Melesanaki, K.; Pouli, P.; Stratoudaki, T.; Klein, S.; Hildenhagen, J.; et al. Yellowing effect and discoloration of pigments: Experimental and theoretical studies. J. Cult. Heritage 2003, 4, 249–256. [Google Scholar] [CrossRef]
- IGME (Instituto Geológico y Minero de España); Mapa geológico de España. Serie Magna, E1:50.000, Sheet 223 (Vigo), 2nd ed.; Instituto Geológico y Minero de España: Madrid, Spain, 1985. [Google Scholar]
- Commission 25 PEM. Protection Et Erosion Des Monuments. Recommandations Provisoires. Essais Recommande´S Pour Mesurer L’altération Des Pierres Et Évaluer L’efficacité Des Méthodes De Traitement. Test No. II. 1: Open porosity. RILEM (Réunion Internationale des Laboratoires d’Essais et de Recherche sur les Matériaux et les Constructions) 1980. (In French)
- Escuder, J.; Carbonell, R.; Martí, D.; Pérez-Estaún, A. Interacción fluido-roca a lo largo de las superficies de fractura: Efectos mineralógicos y texturales de las alteraciones observadas en el Plutón Granítico de Albalá, SO del Macizo Hercínico Ibérico. Boletín Geológico Min. 2001, 112, 59–78. [Google Scholar]
- Pozo-Antonio, J.; Papanikolaou, A.; Philippidis, A.; Melessanaki, K.; Rivas, T.; Pouli, P. Cleaning of gypsum-rich black crusts on granite using a dual wavelength Q-Switched Nd:YAG laser. Constr. Build. Mater. 2019, 226, 721–733. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.; Papanikolaou, A.; Melessanaki, K.; Brea, T.R.; Pouli, P. Laser-Assisted Removal of Graffiti from Granite: Advantages of the Simultaneous Use of Two Wavelengths. Coatings 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Grammatikakis, G.; Demadis, K.D.; Melessanaki, K.; Pouli, P. Laser-assisted removal of dark cement crusts from mineral gypsum (selenite) architectural elements of peripheral monuments at Knossos. Stud. Conserv. 2015, 60, S3–S11. [Google Scholar] [CrossRef]
- CIE. Colorimetry CIE Central Bureau, Vienna; CIE Publication: Vienna, Austria, 1986. [Google Scholar]
- CIE. CIE S014-4/E, 2007. Colorimetry Part 4: CIE 1976 L*a*b* Color Space, Commission Internationale de L’Eclairage; CIE Central Bureau: Vienna, Austria, 2007. [Google Scholar]
- Prieto, B.; Sanmartín, P.; Silva, B.; Martínez-Verdú, F. Measuring the color of granite rocks: A proposed procedure. Color Res. Appl. 2010, 35, 368–375. [Google Scholar] [CrossRef]
- Bonaduce, I.; Andreotti, A. Py-GC-MS of Organic Paint Binders. In Research Signpost; Colombini, M.P., Modugno, F., Eds.; Wiley Publication: Chippenham, UK, 2009. [Google Scholar]
- Berns, R.S. Billmeyer, Saltzman’s Principles of Color Technology, 3rd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- García, O.; Malaga, K. Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J. Cult. Herit. 2012, 13, 77–82. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; 316p. [Google Scholar]
- Van Thor, J.J.; Fisher, N.; Richi, P.R. Assignments of the Pfr-Pr FTIR difference spectrum of cyanobacterial Phytochrome Cph1 using 15N and 13C Isotopically Labeled Phycocyanobilin Chromophere. J. Phys. Chem. B 2005, 109, 20597–20604. [Google Scholar] [CrossRef]
- Calvo, R.M.; García-Rodeja, E.; Macias, F. Mineralogical variability in weathering microsystems of a granitic outcrop of Galicia (Spain). Catena 1983, 10, 225–236. [Google Scholar] [CrossRef]
- Taboada, T.; García , C. Pseudomorphic transformation of plagioclases during the weathering of granitic rocks in Galicia (NW Spain). Catena 1999, 35, 291–302. [Google Scholar] [CrossRef]
- Rodrigues, J.D.; Grossi, A. Indicators and ratings for the compatibility assessment of conservation actions. J. Cult. Herit. 2007, 8, 32–43. [Google Scholar] [CrossRef]
- Revez, M.J.; Rodrigues, J.D. Incompatibility risk assessment procedure for the cleaning of built heritage. J. Cult. Herit. 2016, 18, 219–228. [Google Scholar] [CrossRef]
- Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S. Removal of Verrucaria nigrescens from Carrara marble artefacts using Nd:YAG lasers: Comparison among different pulse durations and wavelengths. Appl. Phys. A 2014, 118, 1517–1526. [Google Scholar] [CrossRef]
- Hakvoort, H.; Heymann, K.; Stein, C.; Murphy, D. In-Situ Optical measurements of sediment type and phytobenthos of tidal flats: A basis for imaging remote sensing spectroscopy. Ocean Dyn. 1997, 49, 367–373. [Google Scholar] [CrossRef]
- Chennu, A.; Farber, P.; Volkenborn, N.; Al-Najjar, M.A.A.; Janssen, F.; De Beer, D.; Polerecky, L. Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments. Limnol. Oceanogr. Methods 2013, 11, 511–528. [Google Scholar] [CrossRef] [Green Version]
- Carrère, V.N.; Spilont, D.; Davoult, D. Comparison of simple techniques for estimating chlorophyll a concentration in the in tertidal zone using high spectral resolution field spectrometer data. Mar. Ecol. Prog. Ser. 2004, 274, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Ramil, A.; Vázquez-Nion, D.; Pozo-Antonio, J.S.; Sanmartín, P.; Prieto, B. Using Hyperspectral Imaging to Quantify Phototrophic Biofilms on Granite. J. Environ. Inform. 2018, 35. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Yates, T.; Lewry, A. Effect of fire damage on natural stonework in buildings. Constr. Build. Mater. 1996, 10, 539–544. [Google Scholar] [CrossRef]
- Hajpál, M.; Török, A. Mineralogical and color changes of quartz sandstones by heat. Environ. Geol. 2004, 46, 311–322. [Google Scholar] [CrossRef]
- Kliem, W.; Lehmann, G. A reassignment of the optical absorption bands in biotites. Phys. Chem. Miner. 1979, 4, 65–75. [Google Scholar] [CrossRef]
Wavelength (nm) | Spot Diameter (cm) | Overlapping (cm) | Fluence (J·cm−2) |
---|---|---|---|
355-third harmonic | 0.09 | 0.01 | 2.00 |
0.06 | 0.01 | 5.00 | |
532−second harmonic | 0.12 | 0.02 | 2.00 |
0.08 | 0.01 | 5.00 | |
1064- fundamental radiation | 0.28 | 0.04 | 2.00 |
0.20 | 0.03 | 5.00 |
Wavelength (nm) | Fluence | ΔL* | Δa* | Δb* | ΔC*ab | ΔH* |
---|---|---|---|---|---|---|
355 | 2 J·cm−2 | 0.77 | −0.91 | −0.69 | −0.82 | 0.82 |
5 J·cm−2 | 1.23 | −0.89 | −2.77 | −2.88 | 0.42 | |
532 | 2 J·cm−2 | 0.83 | −1.81 | −6.27 | −6.45 | 1.01 |
5 J·cm−2 | 1.02 | −1.76 | −7.39 | −7.57 | 0.73 | |
1064 | 2 J·cm−2 | 0.16 | −0.40 | −3.70 | −3.69 | −0.37 |
5 J·cm−2 | −0.69 | −0.65 | −5.72 | −5.70 | −0.56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreiro, P.; Andreotti, A.; Colombini, M.P.; González, P.; Pozo-Antonio, J.S. Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal. Coatings 2020, 10, 196. https://doi.org/10.3390/coatings10030196
Barreiro P, Andreotti A, Colombini MP, González P, Pozo-Antonio JS. Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal. Coatings. 2020; 10(3):196. https://doi.org/10.3390/coatings10030196
Chicago/Turabian StyleBarreiro, P., A. Andreotti, M. P. Colombini, P. González, and J. S. Pozo-Antonio. 2020. "Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal" Coatings 10, no. 3: 196. https://doi.org/10.3390/coatings10030196
APA StyleBarreiro, P., Andreotti, A., Colombini, M. P., González, P., & Pozo-Antonio, J. S. (2020). Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal. Coatings, 10(3), 196. https://doi.org/10.3390/coatings10030196