A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics
Abstract
:1. Introduction
2. Methods for Microencapsulation of Probiotics
3. Edible Coating Materials
4. Proteins
5. Polysaccharides
5.1. Anionic Polysaccharides
5.2. Cationic Polysaccharides
5.3. Non-ionic Polysaccharides
5.4. Amphoteric Polysaccharides
6. Lipids
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO/WHO. Probiotics in Food. In Health and Nutritional Properties and Guidelines for Evaluation; FAO/WHO: Rome, Italy, 2006; p. 56. [Google Scholar]
- Dunne, C. Adaptation of bacteria to the intestinal niche: Probiotics and gut disorder. Inflamm. Bowel Dis. 2001, 7, 136–145. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, G.; Liu, X.; Wang, B.; Cao, H. Saccharomyces Boulardii, a Yeast Probiotic, Regulates Serotonin Transporter in the Intestine. Gastroenterology 2019, 156, 26. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, G.; Qin, X.; Huang, S.; Wang, B.; Cao, H. The Potential Role of Gut Mycobiome in Irritable Bowel Syndrome. Front. Microbiol. 2019, 10, 1894. [Google Scholar] [CrossRef]
- Cayzeele-Decherf, A.; Pélerin, F.; Leuillet, S.; Douillard, B.; Housez, B.; Cazaubiel, M.; Jacobson, G.K.; Jüsten, P.; Desreumaux, P. Saccharomyces cerevisiae CNCM I-3856 in irritable bowel syndrome: An individual subject meta-analysis. World J. Gastroenterol. 2017, 23, 336–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragavan, M.L.; Das, N. Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications. Ann. Microbiol. 2019, 69, 515–530. [Google Scholar] [CrossRef]
- Sanders, M.E.; Benson, A.; Lebeer, S.; Merenstein, D.J.; Klaenhammer, T.R. Shared mechanisms among probiotic taxa: Implications for general probiotic claims. Curr. Opin. Biotechnol. 2018, 49, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Jacouton, E.; Michel, M.-L.; Torres-Maravilla, E.; Chain, F.; Langella, P.; Humaran, L.G.B. Elucidating the Immune-Related Mechanisms by Which Probiotic Strain Lactobacillus casei BL23 Displays Anti-tumoral Properties. Front. Microbiol. 2019, 9, 9. [Google Scholar] [CrossRef]
- Lebeer, S.; A Bron, P.; Marco, M.L.; Van Pijkeren, J.-P.; Motherway, M.O.; Hill, C.; Pot, B.; Roos, S.; Klaenhammer, T. Identification of probiotic effector molecules: Present state and future perspectives. Curr. Opin. Biotechnol. 2018, 49, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Survival of Probiotic Lactobacilli in Acidic Environments Is Enhanced in the Presence of Metabolizable Sugars. Appl. Environ. Microbiol. 2005, 71, 3060–3067. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.; Giri, S. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- McClements, D.J. Requirements for food ingredient and nutraceutical delivery systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Garti, N., McClements, D.J., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 3–18. [Google Scholar] [CrossRef]
- Monnard, P.-A.; Oberholzer, T.; Luisi, P. Entrapment of nucleic acids in liposomes. Biochim. Biophys. Acta (BBA) Biomembr. 1997, 1329, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Shori, A.B. Microencapsulation Improved Probiotics Survival during Gastric Transit. HAYATI J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- Pavli, F.; Tassou, C.; Nychas, G.-J.E.; Chorianopoulos, N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. Int. J. Mol. Sci. 2018, 19, 150. [Google Scholar] [CrossRef] [Green Version]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Ban, Z.; Yan, J.; Lu, H.; Zhang, X.; Wu, Q.; Aghdam, M.S.; Luo, Z.; Li, L. Efficient microencapsulation of Syringa essential oil; the valuable potential on quality maintenance and storage behavior of peach. Food Hydrocoll. 2019, 95, 177–185. [Google Scholar] [CrossRef]
- Ayoub, A.; Sood, M.; Singh, J.; Bandral, J.; Gupta, N.; Bhat, A. Microencapsulation and its applications in food industry. J. Pharmacogn. Phytochem. 2019, 8, 32–37. [Google Scholar]
- Quirós-Sauceda, A.E.; Ayala-Zavala, J.; Olivas, G.; González-Aguilar, G.A. Edible coatings as encapsulating matrices for bioactive compounds: A review. J. Food Sci. Technol. 2014, 51, 1674–1685. [Google Scholar] [CrossRef] [Green Version]
- Janjarasskul, T.; Krochta, J. Edible Packaging Materials. Annu. Rev. Food Sci. Technol. 2010, 1, 415–448. [Google Scholar] [CrossRef] [PubMed]
- Fazilah, N.F.; Hamidon, N.H.; Bin Ariff, A.; Khayat, M.E.; Wasoh, H.; Halim, M. Microencapsulation of Lactococcus lactis Gh1 with Gum Arabic and Synsepalum dulcificum via Spray Drying for Potential Inclusion in Functional Yogurt. Molecules 2019, 24, 1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, L.A.A.; De Almeida, C.A.M.; Mattarugo, N.M.D.S.; Ferri, E.A.V.; Bittencourt, P.R.S.; Colla, E.; Drunkler, D.A. Soy extract and maltodextrin as microencapsulating agents for Lactobacillus acidophilus: A model approach. J. Microencapsul. 2018, 35, 705–719. [Google Scholar] [CrossRef]
- Silva, M.; Tulini, F.L.; Matos, F.E.; Oliveira, M.G.; Thomazini, M.; Favaro-Trindade, C.S. Application of spray chilling and electrostatic interaction to produce lipid microparticles loaded with probiotics as an alternative to improve resistance under stress conditions. Food Hydrocoll. 2018, 83, 109–117. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Semyonov, D.; Ramon, O.; Kaplun, Z.; Levin-Brener, L.; Gurevich, N.; Shimoni, E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res. Int. 2010, 43, 193–202. [Google Scholar] [CrossRef]
- Dolly, P.; Anishaparvin, A.; Joseph, G.S.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum (mtcc 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. J. Microencapsul. 2011, 28, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Boonanuntanasarn, S.; Ditthab, K.; Jangprai, A.; Nakharuthai, C. Effects of Microencapsulated Saccharomyces cerevisiae on Growth, Hematological Indices, Blood Chemical, and Immune Parameters and Intestinal Morphology in Striped Catfish, Pangasianodon hypophthalmus. Probiotics Antimicrob. Proteins 2018, 11, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Rajam, R.; Kumar, S.B.; Prabhasankar, P.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum MTCC 5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality. J. Food Sci. Technol. 2014, 52, 4029–4041. [Google Scholar] [CrossRef] [PubMed]
- Coghetto, C.C.; Brinques, G.B.; Siqueira, N.; Pletsch, J.; Soares, R.M.; Ayub, M.A.Z. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J. Funct. Foods 2016, 24, 316–326. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Morfin, R.C.; Pérez-Masiá, R.; Sánchez, G.; López-Rubio, A. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT 2016, 69, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, A.C.; McHugh, K.J.; Webster, J.; Langer, R.; Jaklenec, A. Layer-by-Layer Encapsulation of Probiotics for Delivery to the Microbiome. Adv. Mater. 2016, 28, 9486–9490. [Google Scholar] [CrossRef] [Green Version]
- Priya, A.J.; Vijayalakshmi, S.P.; Raichur, A. Enhanced Survival of Probiotic Lactobacillus acidophilusby Encapsulation with Nanostructured Polyelectrolyte Layers through Layer-by-Layer Approach. J. Agric. Food Chem. 2011, 59, 11838–11845. [Google Scholar] [CrossRef]
- Penhasi, A. Microencapsulation of probiotic bacteria using thermo-sensitive sol-gel polymers for powdered infant formula. J. Microencapsul. 2015, 32, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Pitigraisorn, P.; Srichaisupakit, K.; Wongpadungkiat, N.; Wongsasulak, S. Encapsulation of Lactobacillus acidophilus in moist-heat-resistant multilayered microcapsules. J. Food Eng. 2017, 192, 11–18. [Google Scholar] [CrossRef]
- Deshpande, H.; Kharat, V.; Katke, S. Studies on Process Standardization and Sensory Evaluation of Probiotic Chocolate. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1527–1534. [Google Scholar] [CrossRef]
- Lee, S.; Kirkland, R.; Grunewald, Z.I.; Sun, Q.; Wicker, L.; De La Serre, C.B. Beneficial Effects of Non-Encapsulated or Encapsulated Probiotic Supplementation on Microbiota Composition, Intestinal Barrier Functions, Inflammatory Profiles, and Glucose Tolerance in High Fat Fed Rats. Nutrients 2019, 11, 1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Prisco, A.; Maresca, D.; Ongeng, D.; Mauriello, G. Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT 2015, 61, 452–462. [Google Scholar] [CrossRef]
- Pop, O.; Brandau, T.; Schwinn, J.; Vodnar, D.C.; Socaciu, C. The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage. J. Food Sci. Technol. 2014, 52, 4146–4155. [Google Scholar] [CrossRef] [Green Version]
- Setijawati, D.; Nursyam, H.; Salis, H. Carrageenan: The difference between PNG and KCL gel precipitation method as Lactobacillus acidophilus encapsulation material. IOP Conf. Ser. Earth Environ. Sci. 2018, 137, 12073. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Shah, N. Effect of Various Encapsulating Materials on the Stability of Probiotic Bacteria. J. Food Sci. 2009, 74, M100–M107. [Google Scholar] [CrossRef]
- Bosnea, L.; Moschakis, T.; Nigam, P.; Biliaderis, C. Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT 2017, 77, 282–289. [Google Scholar] [CrossRef]
- Da Silva, T.M.; Barin, J.S.; Lopes, E.J.; Cichoski, A.J.; Flores, E.M.D.M.; Silva, C.D.B.D.; De Menezes, C.R. Development, characterization and viability study of probiotic microcapsules produced by complex coacervation followed by freeze-drying. Ciência Rural 2019, 49, 49. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 73–109. [Google Scholar]
- Oxley, J. Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 110–130. [Google Scholar]
- Ali, M.E.; Lamprecht, A. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles. Int. J. Pharm. 2017, 516, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Mortazavian, A.; Razavi, S.H.; Ehsani, M.R.; Sohrabvandi, S. Principles and methods of microencapsulation of probiotic microorganisms. Iran. J. Biotechnol. 2007, 5, 1–18. [Google Scholar]
- Whelehan, M.; Marison, I.W. Microencapsulation using vibrating technology. J. Microencapsul. 2011, 28, 669–688. [Google Scholar] [CrossRef] [PubMed]
- Rayleigh, L. On the capillary phenomena of jets. Proc. R. Soc. Lond. 1879, 29, 71–97. [Google Scholar]
- Olivares, A.; Silva, P.; Altamirano, C. Microencapsulation of probiotics by efficient vibration technology. J. Microencapsul. 2017, 34, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, S.; Tosi, A.; Balestra, C.; Nastruzzi, C.; Luca, G.; Mancuso, F.; Calafiore, R.; Calvitti, M. Production and Characterization of Alginate Microcapsules Produced by a Vibrational Encapsulation Device. J. Biomater. Appl. 2008, 23, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.-E.; Li, Z.-H.; Li, D.-T.; Xu, M.; Chen, H.-Y.; Zhang, Z.; Tang, Z.-X. Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng. 2013, 117, 99–104. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 2003, 13, 3–13. [Google Scholar] [CrossRef]
- Garti, N.; Aserin, A. Micelles and microemulsions as food ingredient and nutraceutical delivery systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 211–251. [Google Scholar]
- Singh, M.; Hemant, K.; Ram, M.; Shivakumar, H. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci. 2010, 5, 65–77. [Google Scholar]
- Jaworek, A. Electrohydrodynamic microencapsulation technology. In Encapsulations; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 1–45. [Google Scholar]
- Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, D.; Yang, D.; Aghdam, M.S.; Li, L. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Boil. Technol. 2019, 147, 29–38. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Zhong, W.; Li, B.; Mequanint, K.; Luo, G.; Xing, M. Biomedical Applications of Layer-by-Layer Self-Assembly for Cell Encapsulation: Current Status and Future Perspectives. Adv. Heal. Mater. 2018, 8, 1800939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosnea, L.A.; Moschakis, T.; Biliaderis, C.G. Complex Coacervation as a Novel Microencapsulation Technique to Improve Viability of Probiotics under Different Stresses. Food Bioprocess Technol. 2014, 7, 2767–2781. [Google Scholar] [CrossRef]
- Mokhtari, S.; Jafari, S.M.; Khomeiri, M.; Maghsoudlou, Y.; Ghorbani, M. The cell wall compound of Saccharomyces cerevisiae as a novel wall material for encapsulation of probiotics. Food Res. Int. 2017, 96, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Holkem, A.; Raddatz, G.C.; Barin, J.S.; Flores, E.M.M.; Müller, E.; Codevilla, C.F.; Jacob-Lopes, E.; Grosso, C.R.F.; De Menezes, C.R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT 2017, 76, 216–221. [Google Scholar] [CrossRef]
- Mandal, S.; Hati, S.; Puniya, A.K.; Khamrui, K.; Singh, K. Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298. J. Sci. Food Agric. 2014, 94, 1994–2001. [Google Scholar] [CrossRef]
- Mandal, S.; Puniya, A.; Singh, K. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int. Dairy J. 2006, 16, 1190–1195. [Google Scholar] [CrossRef]
- Gaudreau, H.; Champagne, C.P.; Remondetto, G.E.; Gomaa, A.; Subirade, M. Co-encapsulation of Lactobacillus helveticus cells and green tea extract: Influence on cell survival in simulated gastrointestinal conditions. J. Funct. Foods 2016, 26, 451–459. [Google Scholar] [CrossRef]
- Nag, A.; Han, K.-S.; Singh, H. Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. Int. Dairy J. 2011, 21, 247–253. [Google Scholar] [CrossRef]
- Heidebach, T.; Foerst, P.; Kulozik, U. Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. Int. Dairy J. 2009, 19, 77–84. [Google Scholar] [CrossRef]
- Heidebach, T.; Foerst, P.; Kulozik, U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J. Food Eng. 2010, 98, 309–316. [Google Scholar] [CrossRef]
- Paula, D.D.A.; Martins, E.M.F.; Costa, N.D.A.; De Oliveira, P.M.; De Oliveira, E.B.; Ramos, A.M. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. Int. J. Boil. Macromol. 2019, 133, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.C.E.; Chaves, K.S.; Gebara, C.; Infante, F.N.; Grosso, C.R.; Gigante, M.L. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Res. Int. 2014, 66, 424–431. [Google Scholar] [CrossRef]
- Zer, B.; Uzun, Y.S.; Kirmaci, H.A.; Ozer, B. Effect of Microencapsulation on Viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 During Kasar Cheese Ripening. Int. J. Dairy Technol. 2008, 61, 237–244. [Google Scholar] [CrossRef]
- Ozer, B.; Kirmaci, H.A.; Şenel, E.; Atamer, M.; Hayaloglu, A. Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int. Dairy J. 2009, 19, 22–29. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Frutos, M.J.; Fernandez, M.J.F. Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inulin and in vitro digestion. LWT 2015, 64, 824–828. [Google Scholar] [CrossRef]
- Samedi, L.; Charles, A.L. Viability of 4 Probiotic Bacteria Microencapsulated with Arrowroot Starch in the Simulated Gastrointestinal Tract (GIT) and Yoghurt. Foods 2019, 8, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.Y.; Chen, X.; Sun, Z.W.; Park, H.J.; Cha, D.-S. Preparation of alginate/chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohydr. Polym. 2011, 83, 1479–1485. [Google Scholar] [CrossRef]
- Albertini, B.; Vitali, B.; Passerini, N.; Cruciani, F.; Di Sabatino, M.; Rodriguez, L.; Brigidi, P. Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. Eur. J. Pharm. Sci. 2010, 40, 359–366. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 2004, 14, 737–743. [Google Scholar] [CrossRef]
- Qaziyani, S.D.; Pourfarzad, A.; Gheibi, S.; Nasiraie, L.R. Effect of encapsulation and wall material on the probiotic survival and physicochemical properties of synbiotic chewing gum: Study with univariate and multivariate analyses. Heliyon 2019, 5, e02144. [Google Scholar] [CrossRef] [Green Version]
- Trabelsi, I.; Bejar, W.; Ayadi, D.; Chouayekh, H.; Kammoun, R.; Bejar, S.; Ben Salah, R. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. Int. J. Boil. Macromol. 2013, 61, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Nualkaekul, S.; Lenton, D.; Cook, M.; Khutoryanskiy, V.V.; Charalampopoulos, D. Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydr. Polym. 2012, 90, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Ying-Zi, J.; Huan-Xin, W.; Peng, H.; Xiao-Yan, C. The Application and Immobilization of Bifidobacterium with Carboxymethyl Chitin and Calcium Alginate (Original article in Chinese). Sci. Technol. Eng. 2018, 18, 37–43. [Google Scholar]
- Iyer, C.; Phillips, M.; Kailasapathy, K. Release studies of Lactobacillus casei strain Shirota from chitosan-coated alginate-starch microcapsules in ex vivo porcine gastrointestinal contents. Lett. Appl. Microbiol. 2005, 41, 493–497. [Google Scholar] [CrossRef] [PubMed]
- And, C.I.; Kailasapathy, K. Effect of Co-encapsulation of Probiotics with Prebiotics on Increasing the Viability of Encapsulated Bacteria under In Vitro Acidic and Bile Salt Conditions and in Yogurt. J. Food Sci. 2005, 70, M18–M23. [Google Scholar] [CrossRef]
- Mirzaei, H.; Pourjafar, H.; Homayouni, A. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem. 2012, 132, 1966–1970. [Google Scholar] [CrossRef]
- Praepanitchai, O.-A.; Noomhorm, A.; Anal, A.K. Survival and Behavior of Encapsulated Probiotics (Lactobacillus plantarum) in Calcium-Alginate-Soy Protein Isolate-Based Hydrogel Beads in Different Processing Conditions (pH and Temperature) and in Pasteurized Mango Juice. BioMed Res. Int. 2019, 2019, 9768152–9768158. [Google Scholar] [CrossRef] [Green Version]
- Dafe, A.; Etemadi, H.; Zarredar, H.; Mahdavinia, G.R. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. Int. J. Boil. Macromol. 2017, 97, 299–307. [Google Scholar] [CrossRef]
- Shu, G.; He, Y.; Chen, L.; Song, Y.; Cao, J.; Chen, H. Effect of Xanthan⁻Chitosan Microencapsulation on the Survival of Lactobacillus acidophilus in Simulated Gastrointestinal Fluid and Dairy Beverage. Polymers 2018, 10, 588. [Google Scholar] [CrossRef] [Green Version]
- McMaster, L.D.; Kokott, S.A. Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods. World J. Microbiol. Biotechnol. 2005, 21, 723–728. [Google Scholar] [CrossRef]
- Ameeta, S.; Thompkinson, D.K.; Kumar, M.H.; Latha, S. Prebiotics in the microencapsulating matrix enhance the viability of probiotic Lactobacillus acidophilus LA1. Int. J. Fermented Foods 2013, 2, 12. [Google Scholar]
- Gbassi, G.; Vandamme, T.; Ennahar, S.; Marchioni, E. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins☆. Int. J. Food Microbiol. 2009, 129, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Fareez, I.M.; Lim, S.M.; Mishra, R.K.; Ramasamy, K. Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. Int. J. Boil. Macromol. 2015, 72, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Chavarri, M.; Maranon, I.; Ares, R.; Ibanez, F.C.; Marzo, F.; Villarán, M.D.C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 2010, 142, 185–189. [Google Scholar] [CrossRef]
- Etchepare, M.D.A.; Raddatz, G.C.; Flores, E.M.M.; Zepka, L.Q.; Jacob-Lopes, E.; Barin, J.S.; Grosso, C.R.F.; De Menezes, C.R. Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT 2016, 65, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Ragavan, M.L.; Das, N. Process optimization for microencapsulation of probiotic yeasts. Front. Boil. 2018, 13, 197–207. [Google Scholar] [CrossRef]
- Falco, C.Y.; Amadei, F.; Dhayal, S.K.; Cárdenas, M.; Tanaka, M.; Risbo, J. Hybrid coating of alginate microbeads based on protein-biopolymer multilayers for encapsulation of probiotics. Biotechnol. Prog. 2019, 35, e2806. [Google Scholar] [CrossRef]
- Yeung, T.W.; Üçok, E.F.; Tiani, K.A.; McClements, D.J.; Sela, D.A. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery. Front. Microbiol. 2016, 7, 1946. [Google Scholar] [CrossRef] [Green Version]
- Hébrard, G.; Hoffart, V.; Beyssac, E.; Cardot, J.-M.; Alric, M.; Subirade, M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. J. Microencapsul. 2010, 27, 292–302. [Google Scholar] [CrossRef]
- Doherty, S.; Gee, V.; Ross, R.P.; Stanton, C.; Fitzgerald, G.; Brodkorb, A. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll. 2011, 25, 1604–1617. [Google Scholar] [CrossRef]
- Rajam, R.; Karthik, P.; Parthasarathi, S.; Joseph, G.; Anandharamakrishnan, C. Effect of whey protein – alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. J. Funct. Foods 2012, 4, 891–898. [Google Scholar] [CrossRef]
- Malmo, C.; La Storia, A.; Mauriello, G. Microencapsulation of Lactobacillus reuteri DSM 17938 Cells Coated in Alginate Beads with Chitosan by Spray Drying to Use as a Probiotic Cell in a Chocolate Soufflé. Food Bioprocess Technol. 2011, 6, 795–805. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.S.; Grosso, C.R.F. Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. J. Microencapsul. 2002, 19, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Flores-Belmont, I.A.; Palou, E.; López-Malo, A.; Jiménez-Munguía, M.-T. Simple and double microencapsulation of Lactobacillus acidophilus with chitosan using spray drying. Int. J. Food Stud. 2015, 4, 188–200. [Google Scholar] [CrossRef]
- O’Riordan, K.; Andrews, D.; Buckle, K.; Conway, P. Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J. Appl. Microbiol. 2001, 91, 1059–1066. [Google Scholar] [CrossRef]
- Pinto, S.; Verruck, S.; Vieira, C.R.; Prudencio, E.S.; Amante, E.R.; Amboni, R.D.D.M.C. Influence of microencapsulation with sweet whey and prebiotics on the survival of Bifidobacterium-BB-12 under simulated gastrointestinal conditions and heat treatments. LWT 2015, 64, 1004–1009. [Google Scholar] [CrossRef]
- Ying, D.; Sanguansri, L.; Weerakkody, R.; Bull, M.; Singh, T.; Augustin, M.A. Effect of encapsulant matrix on stability of microencapsulated probiotics. J. Funct. Foods 2016, 25, 447–458. [Google Scholar] [CrossRef]
- Zou, Q.; Liu, X.; Zhao, J.; Tian, F.; Zhang, H.; Zhang, H.; Chen, W. Microencapsulation of Bifidobacterium bifidum F-35 in Whey Protein-Based Microcapsules by Transglutaminase-Induced Gelation. J. Food Sci. 2012, 77, 270. [Google Scholar] [CrossRef]
- Rajam, R.; Anandharamakrishnan, C. Spray freeze drying method for microencapsulation of Lactobacillus plantarum. J. Food Eng. 2015, 166, 95–103. [Google Scholar] [CrossRef]
- Ömür, Ş.; Ocak, B. Development and Characterization of Collagen Hydrolysate Films Incorporated with Melaleuca Alternifolia (Tea Tree) Essential Oil. In Proceedings of the International Agriculture, Environment and Health Congress, Aydin, Turkey, 26–28 October 2018. [Google Scholar]
- Park, H.J.; Chinnan, M.S. Gas and water vapor barrier properties of edible films from protein and cellulosic materials. J. Food Eng. 1995, 25, 497–507. [Google Scholar] [CrossRef]
- Ryu, S.; Rhim, J.; Roh, H.; Kim, S. Preparation and Physical Properties of Zein-Coated High-Amylose Corn Starch Film. LWT 2002, 35, 680–686. [Google Scholar] [CrossRef]
- Handa, A.; Gennadios, A.; Hanna, M.; Weller, C.; Kuroda, N. Physical and Molecular Properties of Egg-white Lipid Films. J. Food Sci. 1999, 64, 860–864. [Google Scholar] [CrossRef]
- Ket-On, A.; Pongmongkol, N.; Somwangthanaroj, A.; Janjarasskul, T.; Tananuwong, K. Properties and storage stability of whey protein edible film with spice powders. J. Food Sci. Technol. 2016, 53, 2933–2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sothornvit, R.; Krochta, J. Water Vapor Permeability and Solubility of Films from Hydrolyzed Whey Protein. J. Food Sci. 2000, 65, 700–703. [Google Scholar] [CrossRef]
- Avena-Bustillos, R.; Olsen, C.; Olson, D.; Chiou, B.; Yee, E.; Bechtel, P.; McHugh, T. Water Vapor Permeability of Mammalian and Fish Gelatin Films. J. Food Sci. 2006, 71, 202. [Google Scholar] [CrossRef]
- Avena-Bustillos, R.; Krochta, J. Water Vapor Permeability of Caseinate-Based Edible Films as Affected by pH, Calcium Crosslinking and Lipid Content. J. Food Sci. 1993, 58, 904–907. [Google Scholar] [CrossRef]
- Khwaldia, K. Water Vapor Barrier and Mechanical Properties of Paper-Sodium Caseinate and Paper-Sodium Caseinate-Paraffin Wax Films. J. Food Biochem. 2010, 34, 998–1013. [Google Scholar] [CrossRef]
- Banerjee, R.; Chen, H. Functional Properties of Edible Films Using Whey Protein Concentrate. J. Dairy Sci. 1995, 78, 1673–1683. [Google Scholar] [CrossRef]
- Gennadios, A.; Brandenburg, A.H.; Park, J.W.; Weller, C.L.; Testin, R.F. Water vapor permeability of wheat gluten and soy protein isolate films. Ind. Crop. Prod. 1994, 2, 189–195. [Google Scholar] [CrossRef]
- Cho, S.Y.; Rhee, C. Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT 2004, 37, 833–839. [Google Scholar] [CrossRef]
- Cho, S.Y.; Park, J.-W.; Batt, H.P.; Thomas, R.L. Edible films made from membrane processed soy protein concentrates. LWT 2007, 40, 418–423. [Google Scholar] [CrossRef]
- Anker, M.; Berntsen, J.; Hermansson, A.-M.; Stading, M. Improved water vapor barrier of whey protein films by addition of an acetylated monoglyceride. Innov. Food Sci. Emerg. Technol. 2002, 3, 81–92. [Google Scholar] [CrossRef]
- Mauer, L.; Smith, D.; Labuza, T. Water vapor permeability, mechanical, and structural properties of edible β-casein films. Int. Dairy J. 2000, 10, 353–358. [Google Scholar] [CrossRef]
- Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D.J.; González-Martínez, C. Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits. Crit. Rev. Food Sci. Nutr. 2008, 48, 496–511. [Google Scholar] [CrossRef]
- Chakravartula, S.S.N.; Soccio, M.; Lotti, N.; Balestra, F.; Rosa, M.D.; Siracusa, V. Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Mater. 2019, 12, 2454. [Google Scholar] [CrossRef] [Green Version]
- Rankin, J.; Wolff, I.; Davis, H.; Rist, C. Permeability of Amylose Film to Moisture Vapor, Selected Organic Vapors, and the Common Gases. Ind. Eng. Chem. Chem. Eng. Data Ser. 1958, 3, 120–123. [Google Scholar] [CrossRef]
- Nogueira, G.; Fakhouri, F.; Velasco, J.I.; De Oliveira, R.A. Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers 2019, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Razzaq, H.A.; Pezzuto, M.; Santagata, G.; Silvestre, C.; Cimmino, S.; Larsen, N.; Duraccio, D. Barley β-glucan-protein based bioplastic film with enhanced physicochemical properties for packaging. Food Hydrocoll. 2016, 58, 276–283. [Google Scholar] [CrossRef]
- Dashipour, A.; Razavilar, V.; Hosseini, H.; Alibadi, S.S.; German, J.B.; Ghanati, K.; Khakpour, M.; Khaksar, R. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int. J. Boil. Macromol. 2015, 72, 606–613. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, F.; Li, Y.; Shoemaker, C.; Xia, W. Preparation and characterization of pullulan–chitosan and pullulan–carboxymethyl chitosan blended films. Food Hydrocoll. 2013, 30, 82–91. [Google Scholar] [CrossRef]
- Fakhouri, F.; Tanada-Palmu, P.S.; Grosso, C.R. Characterization of composite biofilms of wheat gluten and cellulose acetate phthalate. Braz. J. Chem. Eng. 2004, 21, 261–264. [Google Scholar] [CrossRef]
- Plotto, A. Coatings for Fresh Fruits and Vegetables; Informa UK Limited: London, UK, 2011; pp. 185–242. [Google Scholar]
- Yang, L.; Paulson, A. Mechanical and water vapour barrier properties of edible gellan films. Food Res. Int. 2000, 33, 563–570. [Google Scholar] [CrossRef]
- Bifani, V.; Ramírez, C.; Ihl, M.; Rubilar, M.; García, A.; Zaritzky, N. Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films. LWT 2007, 40, 1473–1481. [Google Scholar] [CrossRef]
- Liu, F.; Chang, W.; Chen, M.; Xu, F.; Ma, J.; Zhong, F. Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocoll. 2020, 98, 105007. [Google Scholar] [CrossRef]
- Bertuzzi, M.; Vidaurre, E.C.; Armada, M.; Gottifredi, J. Water vapor permeability of edible starch based films. J. Food Eng. 2007, 80, 972–978. [Google Scholar] [CrossRef]
- Park, H.; Weller, C.; Vergano, P.; Testin, R. Permeability and Mechanical Properties of Cellulose-Based Edible Films. J. Food Sci. 1993, 58, 1361–1364. [Google Scholar] [CrossRef]
- Hagenmaier, R.D.; Shaw, P.E. Moisture permeability of edible films made with fatty acid and hydroxypropyl methyl cellulose. J. Agric. Food Chem. 1990, 38, 1799–1803. [Google Scholar] [CrossRef]
- Grandtner, G.; Cavrot, J.-P.; Bandur, G.; Rusnac, L.; Krausz, P.; Granet, R.; Joly, N.; Martin, P. Synthesis of fructooligosaccharide-based plastic films starting from inulin. e-Polymers 2005, 5, 1–7. [Google Scholar] [CrossRef]
- Hanlon, J.F. Institute of Packaging Professionals. Handbook of Package Engineering, 2nd ed.; Technomic Pub. Co.: Lancaster, PA, USA, 1992. [Google Scholar]
- Harnkarnsujarit, N.; Li, Y. Structure-property modification of microcrystalline cellulose film using agar and propylene glycol alginate. J. Appl. Polym. Sci. 2017, 134, 45533. [Google Scholar] [CrossRef]
- Zarabadi, M.H.; Kadivar, M.; Keramat, J. Production and evaluation the properties of laminated oat protein film and electrospun nylon. J. Food Process. Preserv. 2017, 42, e13513. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Sharma, L.; Kaur, M.; Kaur, R. Physical, structural and thermal properties of composite edible films prepared from pearl millet starch and carrageenan gum: Process optimization using response surface methodology. Int. J. Boil. Macromol. 2019, 143, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Gnanasambandam, R.; Hettiarachchy, N.; Coleman, M. Mechanical and Barrier Properties of Rice Bran Films. J. Food Sci. 1997, 62, 395–398. [Google Scholar] [CrossRef]
- Biduski, B.; Da Silva, F.T.; Silva, W.M.F.; El Halal, S.L.M.; Pinto, V.Z.; Dias, A.R.G.; Zavareze, E. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chem. 2017, 214, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, M.A.; Salvay, A.G.; Delgado, J.F.; De La Osa, O.; Wagner, J.R. Use of Residual Yeast Cell Wall for New Biobased Materials Production: Effect of Plasticization on Film Properties. Food Bioprocess Technol. 2018, 11, 1995–2007. [Google Scholar] [CrossRef]
- Ramos, P.E.; Cerqueira, M.A.; Coimbra, M.A.; Vicente, A.A. Physiological protection of probiotic microcapsules by coatings. Crit. Rev. Food Sci. Nutr. 2017, 58, 1864–1877. [Google Scholar] [CrossRef]
- Jeyakumari, A.; Zynudheen, A.A.; Parvathy, U. Microencapsulation of Bioactive Food Ingredients and Controlled Release A Review. MOJ Food Process. Technol. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Achinna, P.; Kuna, A. Microencapsulation technology: A review. J. Res. ANGRAU 2010, 38, 86–102. [Google Scholar]
- Tzia, C.; Tasios, L.; Spiliotaki, T.; Chranioti, C.; Giannou, V.; Varzakas, T. Edible Coatings and Films to Preserve Quality of Fresh Fruits and Vegetables. In Engineering Aspects of Membrane Separation and Application in Food Processing; Informa UK Limited: London, UK, 2015; Volume 20152939, pp. 531–570. [Google Scholar]
- Vieira, M.G.A.; Da Silva, M.A.; Santos, L.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, M. Mechanical and Permeability Properties of Edible Films and Coatings for Food and Pharmaceutical Applications. In Edible Films and Coatings for Food Applications; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2009; pp. 347–366. [Google Scholar]
- Desai, K.G.; Park, H.J. Recent Developments in Microencapsulation of Food Ingredients. Dry. Technol. 2005, 23, 1361–1394. [Google Scholar] [CrossRef]
- Morrison, N.A.; Clark, R.C.; Chen, Y.L.; Talashek, T.; Sworn, G. Gelatin alternatives for the food industry. In Progress in Colloid and Polymer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2007; Volume 114, pp. 127–131. [Google Scholar]
- Gómez-Guillen, M.C.; Giménez, B.; López-Caballero, M.; Montero, M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Nualkaekul, S.; Cook, M.; Khutoryanskiy, V.V.; Charalampopoulos, D. Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Res. Int. 2013, 53, 304–311. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, W. Coacervation Processes. In Microencapsulation in the Food Industry; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 125–137. [Google Scholar]
- Thies, C. Microencapsulation of Flavors by Complex Coacervation. In Encapsulation and Controlled Release Technologies in Food Systems; Wiley: Hoboken, NJ, USA, 2007; pp. 149–170. [Google Scholar]
- Meng, Y.; Cloutier, S. Gelatin and Other Proteins for Microencapsulation. In Microencapsulation in the Food Industry; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 227–239. [Google Scholar]
- Weinbreck, F.; De Vries, R.; Schrooyen, P.; De Kruif, C.G. Complex Coacervation of Whey Proteins and Gum Arabic. Biomacromolecules 2003, 4, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.-X.; Huang, G.-Q.; Wang, S.; Sun, Y.-T. Microencapsulation of capsanthin by soybean protein isolate-chitosan coacervation and microcapsule stability evaluation. J. Appl. Polym. Sci. 2013, 131, 131. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishinari, K.; Fang, Y.-P.; Guo, S.; Phillips, G. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Wang, X.; Luo, K.; Liu, S.; Adhikari, B.; Chen, J. Improvement of gelation properties of soy protein isolate emulsion induced by calcium cooperated with magnesium. J. Food Eng. 2019, 244, 32–39. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, M.; Qin, F.; Adhikari, B.; He, Z.; Chen, J. Enhanced CaSO4-induced gelation properties of soy protein isolate emulsion by pre-aggregation. Food Chem. 2018, 242, 459–465. [Google Scholar] [CrossRef]
- Mulvihill, D.M.; Donovan, M. Whey proteins and their thermal denaturation—A review. Irish J. Food Sci. Technol. 1987, 11, 43–75. [Google Scholar]
- Augustin, M.A.; Oliver, C.M. Use of Milk Proteins for Encapsulation of Food Ingredients. In Microencapsulation in the Food Industry; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 211–226. [Google Scholar]
- Visker, M.H.P.W.; Heck, J.; Van Valenberg, H.; Van Arendonk, J.; Bovenhuis, H. Short communication: A new bovine milk-protein variant: α-Lactalbumin variant D. J. Dairy Sci. 2012, 95, 2165–2169. [Google Scholar] [CrossRef]
- Sarode, A.; Sawale, P.; Khedkar, C.; Kalyankar, S.; Pawshe, R. Casein and Caseinate: Methods of Manufacture. In Encyclopedia of Food and Health; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 676–682. [Google Scholar]
- DeJong, G.; Koppelman, S.J. Transglutaminase Catalyzed Reactions: Impact on Food Applications. J. Food Sci. 2002, 67, 2798–2806. [Google Scholar] [CrossRef]
- Gangurde, H.; Patil, P.; Chordiya, M.; Baste, N. Whey protein. Sch. Res. J. 2011, 1, 69. [Google Scholar] [CrossRef]
- O’Mahony, J.; Fox, P. Milk: An Overview. In Milk Proteins; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 19–73. [Google Scholar]
- Morr, C.V.; Ha, E.Y.W. Whey protein concentrates and isolates: Processing and functional properties. Crit. Rev. Food Sci. Nutr. 1993, 33, 431–476. [Google Scholar] [CrossRef] [PubMed]
- Rojas, S.A.; Kung, B.; Senaratne, V.; Dalgleish, D.G.; Flores, A. Gelation of commercial fractions of β-lactoglobulin and α-lactalbumin. Int. Dairy J. 1997, 7, 79–85. [Google Scholar] [CrossRef]
- Santos, M.B.; Da Costa, N.R.; Garcia-Rojas, E.E. Interpolymeric Complexes Formed Between Whey Proteins and Biopolymers: Delivery Systems of Bioactive Ingredients. Compr. Rev. Food Sci. Food Saf. 2018, 17, 792–805. [Google Scholar] [CrossRef]
- Layman, D.; Lönnerdal, B.; Fernstrom, J.D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 2018, 76, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Larsen, L.B.; Wedholm-Pallas, A.; Lindmark-Månsson, H.; Andrén, A. Different proteomic profiles of sweet whey and rennet casein obtained after preparation from raw versus heat-treated skimmed milk. Dairy Sci. Technol. 2010, 90, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Gruber, J. Polysaccharide-Based Polymers in Cosmetics. In Principles of Polymer Science and Technology in Cosmetics and Personal Care; Desmond Goddard, J.V.G.E., Ed.; CRC Press: London, UK, 1999; pp. 325–389. [Google Scholar] [CrossRef]
- Matalanis, A.; Jones, O.G.; McClements, D.J. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 2011, 25, 1865–1880. [Google Scholar] [CrossRef] [Green Version]
- Kwiecień, I.; Kwiecień, M. Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels 2018, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Burnside, E. Hydrocolloids and Gums as Encapsulating Agents. In Microencapsulation in the Food Industry; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 241–252. [Google Scholar]
- Chakraborty, S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J. Carbohydr. Chem. 2017, 36, 1–19. [Google Scholar] [CrossRef]
- Yuguchi, Y.; Thuy, T.T.T.; Urakawa, H.; Kajiwara, K. Structural characteristics of carrageenan gels: Temperature and concentration dependence. Food Hydrocoll. 2002, 16, 515–522. [Google Scholar] [CrossRef]
- Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of edible films and coatings from alginates and carrageenans. Carbohydr. Polym. 2016, 137, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wandrey, C.; Bartkowiak, A.; Harding, S. Materials for encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing, 1st ed.; Zuidam, N.J., Nedovic, V., Eds.; Springer-Verlag: New York, NY, USA, 2009; pp. 31–100. [Google Scholar] [CrossRef]
- Jansson, P.-E.; Kenne, L.; Lindberg, B. Structure of the extracellular polysaccharide from xanthomonas campestris. Carbohydr. Res. 1975, 45, 275–282. [Google Scholar] [CrossRef]
- Petri, D.F. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 2015, 132, 132. [Google Scholar] [CrossRef] [Green Version]
- Kool, M.M.; Gruppen, H.; Sworn, G.; Schols, H.A. The influence of the six constituent xanthan repeating units on the order–disorder transition of xanthan. Carbohydr. Polym. 2014, 104, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Kool, M.M.; Schols, H.A.; Delahaije, R.; Sworn, G.; Wierenga, P.A.; Gruppen, H. The influence of the primary and secondary xanthan structure on the enzymatic hydrolysis of the xanthan backbone. Carbohydr. Polym. 2013, 97, 368–375. [Google Scholar] [CrossRef]
- Wu, M.; Qu, J.; Shen, Y.; Dai, X.; Wei, W.; Shi, Z.; Li, G.; Ma, T. Gel properties of xanthan containing a single repeating unit with saturated pyruvate produced by an engineered Xanthomonas campestris CGMCC 15155. Food Hydrocoll. 2019, 87, 747–757. [Google Scholar] [CrossRef]
- Bergmann, D.; Furth, G.; Mayer, C. Binding of bivalent cations by xanthan in aqueous solution. Int. J. Boil. Macromol. 2008, 43, 245–251. [Google Scholar] [CrossRef]
- Cook, M.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V.V. Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release 2012, 162, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Fareez, I.M.; Lim, S.M.; Mishra, R.K.; Ramasamy, K. Microencapsulation of Lactobacillus SP. Using Chitosan-Alginate-Xanthan Gum-?-Cyclodextrin and Characterization of its Cholesterol Reducing Potential and Resistance Against pH, Temperature and Storage. J. Food Process. Eng. 2016, 40, e12458. [Google Scholar] [CrossRef]
- Zia, K.M.; Tabasum, S.; Khan, M.F.; Akram, N.; Akhter, N.; Noreen, A.; Zuber, M. Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int. J. Boil. Macromol. 2018, 109, 1068–1087. [Google Scholar] [CrossRef] [PubMed]
- Nussinovitch, A. Hydrocolloids in Flavor Encapsulation. In Water-Soluble Polymer Applications in Foods; Nussinovitch, A., Ed.; Blackwell Science: Oxford, UK, 2003; pp. 31–113. [Google Scholar] [CrossRef]
- Karlton-Senaye, B.; Ibrahim, S. Impact of gums on the growth of probiotics. Agro Food Ind. Hi-Tech 2013, 24, 10–14. [Google Scholar]
- Izydorczyk, M.; Cui, S.; Wang, Q. Polysaccharide Gums: Structures, Functional Properties, and Applications. Food Carbohydr. Chem. Phys. Prop. Appl. 2005. [Google Scholar] [CrossRef]
- Wallick, D. Cellulose Polymers in Microencapsulation of Food Additives. In Microencapsulation in the Food Industry; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 181–193. [Google Scholar]
- Narayanan, D.; Kumar, A.S.; Chennazhi, K.P. Versatile carboxymethyl chitin and chitosan nanomaterials: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 574–598. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- Heinze, T.; El Seoud, O.A.; Koschella, A. Etherification of Cellulose. In Springer Series on Polymer and Composite Materials; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 429–477. [Google Scholar]
- Liu, H.; Yang, Q.; Zhang, L.; Zhuo, R.; Jiang, X. Synthesis of carboxymethyl chitin in aqueous solution and its thermo- and pH-sensitive behaviors. Carbohydr. Polym. 2016, 137, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Călinoiu, L.-F.; Ștefănescu, B.E.; Pop, I.; Muntean, L.; Vodnar, D.C. Chitosan Coating Applications in Probiotic Microencapsulation. Coatings 2019, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Shah, U.; Naqash, F.; Gani, A.; Masoodi, F.A. Art and Science behind Modified Starch Edible Films and Coatings: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 568–580. [Google Scholar] [CrossRef]
- And, Z.L.; Han, J. Film-forming Characteristics of Starches. J. Food Sci. 2005, 70, 31. [Google Scholar] [CrossRef]
- BeMiller, J.N. Starches: Conversions, modifications, and uses. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; BeMiller, J.N., Ed.; AACC International Press: Amsterdam, The Netherlands, 2019; pp. 191–221. [Google Scholar] [CrossRef]
- Van Der Veen, B.A.; Van Alebeek, G.-J.W.M.; Uitdehaag, J.C.M.; Dijkstra, B.W.; Dijkhuizen, L. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. JBIC J. Boil. Inorg. Chem. 2000, 267, 658–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Cagno, M.P. The Potential of Cyclodextrins as Novel Active Pharmaceutical Ingredients: A Short Overview. Molecules 2016, 22, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pariot, N.; Edwards-Lévy, F.; Andry, M.-C.; Levy, M.-C. Cross-linked β-cyclodextrin microcapsules: Preparation and properties. Int. J. Pharm. 2000, 211, 19–27. [Google Scholar] [CrossRef]
- Gidwani, B.; Vyas, A. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs. BioMed Res. Int. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Muzzafar, A.; Sharma, V. Microencapsulation of probiotics for incorporation in cream biscuits. J. Food Meas. Charact. 2018, 12, 2193–2201. [Google Scholar] [CrossRef]
- Synthesis of Carboxymethyl Chitosan and its Rheological Behaviour in Pharmaceutical and Cosmetic Emulsions. J. Appl. Pharm. Sci. 2017, 7, 70–78.
- Zhao, L.; Zhu, B.; Jia, Y.; Hou, W.; Su, C. Preparation of Biocompatible Carboxymethyl Chitosan Nanoparticles for Delivery of Antibiotic Drug. BioMed Res. Int. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shit, S.C.; Shah, P. Edible Polymers: Challenges and Opportunities. J. Polym. 2014, 2014, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Aydin, F.; Kahve, H.; Ardic, M. Lipid-based edible films. J. Sci. Eng. Res. 2017, 4, 86–92. [Google Scholar]
- Wolfmeier, U.; Schmidt, H.; Michalczyk, G.; Payer, W.; Dietsche, W.; Boehlke, K.; Hohner, G.; Wildgruber, J.; Heinrichs, F.-L. Waxes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Hall, D.J. Edible coatings from lipids, waxes, and resins. In Edible Coatings and Films to Improve Food Quality, 2nd ed.; Baldwin, E.A., Hagenmaier, R., Bai, J., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 79–101. [Google Scholar] [CrossRef]
- Rao, A.; Shiwnarain, N.; Maharaj, I. Survival of Microencapsulated Bifidobacterium pseudolongum in Simulated Gastric and Intestinal Juices. Can. Inst. Food Sci. Technol. J. 1989, 22, 345–349. [Google Scholar] [CrossRef]
- Xie, M. Phospholipids. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 214–217. [Google Scholar] [CrossRef]
- Jackson, L. Microencapsulation and the food Industry. Lebensm. Wiss. Technol. 1991, 24, 289–297. [Google Scholar]
- Singh, H.; Thompson, A.; Liu, W.; Corredig, M. Liposomes as food ingredients and nutraceutical delivery systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 287–318. [Google Scholar]
- Sarao, L.K.; Arora, M.; M, A. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Sci. Nutr. 2015, 57, 344–371. [Google Scholar] [CrossRef] [PubMed]
Probiotic | Method * | Coating Material ** | Particle Size (µm) | Reference | |
---|---|---|---|---|---|
Inner | External | ||||
Lactobacillus paracasei subsp. paracasei E6, Lactobacillus paraplantarum B1 | CC | WPI + GA | - | 10–15 | [58] |
Lactobacillus paracasei subsp. paracasei E6, Lactobacillus paraplantarum B1 | CC + EX | WPI + GA | A | 2000–3000 | [41] |
Lactobacillus acidophilus La-5 | CC + LYO | G + GA | - | 227.05 | [42] |
Lactobacillus plantarum BL011 | ES | A, A + P | - | 7–2000 | [29] |
Bifidobacterium longum BIOMA 5920 | ES | A + CLG | - | 300–600 | [55] |
Lactobacillus acidophilus TISTR 1338 | ES | A + Z | - | 500–600 | [55] |
Bifidobacterium animalis subsp. lactis Bb12 | ES | WPC + Pul | - | 1.1–4.7 | [55] |
Lactobacillus plantarum CECT 748 T | ES | WPC | - | ND ** | [30] |
Lactobacillus acidophilus PTCC 1643, Bifidobacterium bifidum PTCC 1644 | EM | A + CaO | YCW | 90–117 | [59] |
Bifidobacterium BB-12 | EM | A + CaO | - | 54–55 | [60] |
Lactobacillus casei NCDC-298 | EM | A + RS + SO | SA, BW, PLL | ND | [61] |
Lactobacillus casei NCDC-298 | EM | A + SO | - | ND | [62] |
Lactobacillus helveticus R0052 | EM | P + CaO | WPI | 90–130 | [63] |
Lactobacillus casei 431 | EM | SC + CaO, SC + GG + CaO | - | 287–399 | [64] |
Lactobacillus paracasei ssp. paracasei F19, Bifidobacterium lactis Bb12 | EM | SC + Tgase + SFO | - | 165 ± 23 | [65] |
Lactobacillus acidophilus | EM | CGNs + VF | - | ND | [39] |
Lactobacillus rhamnosus Lr-32, Bifidobacterium longum Bl-05, Lactobacillus salivarius Ls-33, Lactobacillus plantarum Lpc-37, Lactobacillus acidophilus NCFM, Lactobacillus paracasei Lp-115, Bifidobacterium lactis type Bl-04, Bifidobacterium lactis Bi-07, Lactobacillus rhamnosus HOWARU Bifidobacterium bifidum HOWARU | EM | A + VF, GUG + VF, XG + VF, LBG + VF, CGN + VF | - | ND | [40] |
Lactobacillus F19, Bifidobacterium lactis Bb12 | EM + LYO | SC + Tgase + SFO, SC + RS + Tgase + SFO | - | ND | [66] |
Lactobacillus plantarum (Digestive Care, USA) | EM + CC | G + CoO, G + GA | - | 66.07 ± 3.24 105.66 ± 3.24 | [67] |
Lactobacillus acidophilus La5 | EM + CC | P + B | WPI | 230–270 | [68] |
Lactobacillus acidophilus LA-5, Bifidobacterium bifidum BB-12 | EM, EX | k-CGN + CoO, A | - | 500–1000 | [69] |
Bifidobacterium bifidum BB-12, Lactobacillus acidophilus LA-5 | EM, EX | k-CGN + CoO, A | - | 300–400 200–300 | [70] |
Lactobacillus plantarum CECT 220 (ATCC 8014) | EM, EX | A + XG + I + OO, A + XG + I | - | 600–900 1860–2250 | [71] |
Lactobacillus plantarum MF369875.1, Weissela paramesenteroides CP023501.1, Enterococcus faecalis HQ802261.1, Lactobacillus paraplantarum AB362736.1 | EX + LYO | AS + WP, M + WP | - | 382.8 349.92–458.91 | [72] |
Lactobacillus acidophilus TISTR 1338 | EM + ES + FBD | A + EA + SA | - | 450 ± 50 | [34] |
Lactobacillus casei ATCC 393 | EX | A | Ch, CMCS | 2200 ± 100 | [73] |
Lactobacillus acidophilus, Lactobacillus bulgaricus | EX | A + GUG | - | 2000–5000 | [35] |
Lactobacillus bulgaricus (Hangzhou Wahaha Group. Co. Ltd.) | EX | A + Milk | - | 750 ± 12 to 890 ± 25 | [51] |
Bifidobacterium lactis BI07 Lactobacillus acidophilus LA14 | EX | A + XG, A + CAP | - | 1000–2000 | [74] |
Lactobacillus casei W8® | EX | P | - | ND | [36] |
Lactobacillus acidophilus 547, Bifidobacterium bifidum ATCC 1994, Lactobacillus casei 01 | EX | A | A + PLL, Ch, A | 1890 | [75] |
Lactobacillus reuteri (PTCC 1655) | EX | A | - | 1000–2250 | [76] |
Lactobacillus plantarum TN8 | EX | A | Ch | 20 | [77] |
Lactobacillus plantarum NCIMB 8826 | EX | A, P | Ch | 2500–3500 | [78] |
Bifidobacterium sp. | EX | A + CMCH | - | ND | [79] |
Lactobacillus acidophilus, Lactobacillus bulgaricus | EX | A + GUG | - | ND | [35] |
Lactobacillus casei Shirota (Yakult®) | EX | A + RS | Ch | 500 | [80] |
Lactobacillus acidophilus CSCC 2400 and 2409 | EX | A + RS | A, Ch, PLL | 450–500 | [81] |
Lactobacillus acidophilus La5 | EX | A + RS | - | 50–80 | [82] |
Lactobacillus plantarum TISTR 050 | EX | A + SPI | - | 3030 ± 30 to 3440 ± 60 | [83] |
Lactobacillus plantarum ATCC:13643 | EX | CMC, CMC + k-CGN | - | 86–95 | [84] |
Lactobacillus acidophilus (Synbiotech Biotechnology Co., Ltd.) | EX | XG + Ch | XG | ND | [85] |
Bifidobacterium lactis | EX | XG + GG | - | 20–2200 | [86] |
Lactobacillus acidophilus LA1 | EX | A + CS + GUG, A + CS + FOS | - | 15–180 | [87] |
Lactobacillus plantarum 299v, 800, and CIP A159 | EX + LYO | A | WP | ND | [88] |
Lactobacillus plantarum LAB13 | EX + LYO | A, A + XG | Ch | 1343.2 ± 4.8 | [89] |
Lactobacillus gasseri, Bifidobacterium bifidum (CECT) | EX + LYO | A + Ch | - | 340–360 | [90] |
Lactobacillus plantarum LAB12 | EX + LYO | A + XG, A + XG + β-CD | Ch | 1302–1335 | [89] |
Lactobacillus acidophilus La-14 (Danisco) | EX + LYO | A, A + RS + Ch | - | 112.5; 114.5 | [91] |
Yarrowia lipolytica VIT-MN01, Kluyveromyces lactis VIT-MN02, Lipomyces starkeyi VIT-MN03, Saccharomycopsis fibuligera VIT-MN04, Brettanomyces custersianus VIT-MN07 | EX + LYO | A + BBG A + FMBG A + GA A + OBG A + PMBG A + RBG | WPI,Ch | 700–750 750–800 ND 600–650 750–800 850–899 | [92] |
Lactobacillus rhamnosus GG, LMG 18243 | EX, LBL | A | Ch + LF + SC, Ch + DS | 130 ± 47 | [93] |
Lactobacillus reuteri DSM 17938 | EXVN | A | Ch | 110 ± 5 | [37] |
Bifidobacterium longum subsp. infantis (UMA 298, UMA 299, MA 300, UMA 305), Bifidobacterium longum subsp. longum (UMA 306, UMA 318, UMA 401, UMA 402) | EXVN | A | Ch | 310–340 | [94] |
Saccharomyces boulardii (Ultralevure, n° 325988.5) | EXVN | A + WPI, WPI A, A + WPI | WPI, A A, WPI | 900–1250 800–1200 | [95] |
Bifidobacterium lactis 300b | EXVN | A + HPMC, A + CMC, A + MCC, A + MS, A + D, A + Pul | - | 1054–1066 | [38] |
Lactobacillus rhamnosus GG ATCC 53103 | EXVN | WPI | - | 200 | [96] |
Bifidobacterium animalis spp lactis NCC 2818 (BL818) | FBD | HPMC | HPCP | 55.6–132.7 | [33] |
Bacillus coagulans ATCC 7050 | LBL | A | Ch | ND | [31] |
Lactobacillus acidophilus | LBL | Ch | CMC | ND | [32] |
Lactobacillus plantarum MTCC 5422 | LYO | FOS + WPI, FOS + DWPI | - | 70–90 | [28] |
Lactobacillus plantarum MTCC 5421 | LYO, SDY | A + WPI, A + DWPI | - | ND | [97] |
Lactobacillus casei DSM 20011, Lactobacillus reuteri DSM 20016, Lactobacillus bulgaricus DSM 20081 | LYO + EXVN | A | - | 600–800 | [49] |
Saccharomyces cerevisiae DSY-5 | LYO | GUG | - | ND | [27] |
Lactobacillus acidophilus LA3, Bifidobacterium animalis subsp. 103 lactis BLC1 | SCH, CC + LYO | VF | G + GA | 79–83 | [23] |
Lactobacillus reuteri DSM 17938 | SDY | A | Ch | 3 | [98] |
Lactobacillus acidophilus La-05, Bifidobacterium lactis Bb-12 | SDY | CAP | - | 5–50 | [99] |
Lactobacillus acidophilus NRRL (B-4495) | SDY | Ch + I, Ch + M, G + M | Ch + I, Ch + M | 11.39 13.94 21.37 | [100] |
Lactococcus lactis Gh1 | SDY | GA + seed, leaf, or pulp extract of miracle fruit (Synsepalum dulcificum) | - | ND | [21] |
Bifidobacterium PL1 | SDY | MS | - | 5 | [101] |
Lactobacillus acidophilus La-05 | SDY | SE + M | - | 4.97 ± 2.33 to 8.82 ± 4.07 | [22] |
Bifidobacterium lactis Bb12 | SDY | SW, SWI, SWP | - | ND | [102] |
Lactobacillus rhamnosus GG | SDY | WPI, HWP, DGS, RS, SFO | - | ND | [103] |
Bifidobacterium bifidum F-35 | SDY, EM | WPI, WPI + SO | - | 20 200 | [104] |
Saccharomyces boulardii, Lactobacillus acidophilus LA-5, Bifidobacterium bifidum BB-12 | SDY + SCH, SCH + SDY | GA + β-CD, HPO | HPO, GA + β-CD, | 4.88–24.06 244.55–612.54 | [24] |
Lactobacillus paracasei LMG P-21380 | SFD | MT | - | 1000–1400 | [25] |
Lactobacillus plantarum MTCC 5422 | SFD | A + WPI, WPI + FOS, A + DWPI, DWPI + FOS, | - | 53.99–105.07 | [105] |
Lactobacillus plantarum MTCC 5422 | SFD, LYO, SDY | WPI | - | ND | [26] |
Coating Material | Water Vapour Permeability | O2 and CO2 Permeability | ||||
---|---|---|---|---|---|---|
WVP | PO2 | PCO2 | ||||
Test Conditions | (10−12 g·m−1·s−1·Pa−1) | Test Conditions | (10−10 L·m−1·d−1·Pa−1) | References | ||
Proteins | ||||||
Collagen (CLG) | 25 °C, 50% RH | 211 ± 44 | - * | - | - | [106] |
Zein (Z) | 21–30 °C, 0/85% RH | 116 | 20 °C, 60% RH | 0.31 | 2.31 | [107] |
25 °C, 50% RH | 3900 | - | - | - | [108] | |
Egg albumen (EA)g | 25 °C, 100/50% RH | 2310 | - | - | - | [109] |
Heat denatured whey protein isolate (DWPI) | 25 °C, 50% RH | 922 | - | - | - | [110] |
Hydrolysed whey protein (HWP) | 25 °C, 35% RH | 944 | - | - | - | [111] |
Mammalian gelatin films | 25 °C, 0/81% RH | 523 | - | - | - | [112] |
Sodium caseinate (SC) | 25 °C, 0/81% RH | 425 | 25 °C, 77% RH | 8.8 | 52.78 | [113,114] |
23 °C, 55% RH | 3580 | - | - | - | [115] | |
Soy protein isolate (SPI) | 5-35 °C, 100/50% and 100/70%RH | 1600–4400 | - | - | - | [116] |
25 °C, 50% RH | 830 | - | - | - | [117] | |
25 °C, 50% RH | 3540 | 25 C, 50% RH | - | - | [118] | |
Whey protein (WP) | 25 °C, 100/55% RH | 616–4170 | 25 °C, 50% RH | 0.012 | 2.13 | - |
Whey protein concentrate (WPC) | 23 °C, 55% RH | 2960 | - | - | - | [115] |
Whey protein isolate (WPI) | 23 °C, 50% RH | 3830 | - | - | - | [119] |
23 °C, 55% RH | 3370 | - | - | - | [115] | |
β-casein | 22.5 °C,53/11% and 53/76% RH | 179–523 | - | - | - | [120] |
Polysaccharides | ||||||
Alginate (A) | 20 °C, 100/50% RH | 3900 | - | - | - | [121] |
25 °C, 50% RH | 102 | 58.3 | 139 | [122] | ||
Amylose | 25 °C, 100/0% RH | 370 | - | - | - | [123] |
Arrowroot starch (AS) | 25 °C, 75% RH | 41.9 | - | - | - | [124] |
Barley β-glucan-protein alkaline extracts | 25 °C, 50% RH | 400 | - | - | - | [125] |
Barley β-glucan-protein non alkaline extracts | 25 °C, 50% RH | 1400.0 | - | - | - | [125] |
Carboxymethyl cellulose (CMC) | 25 °C, 75% RH | 298 | - | - | - | [126] |
Carboxymethyl chitosan (CMCS) | 25 °C, 53% RH | 236 | - | - | - | [127] |
Carrageenan (CGN) | 25 °C, 100/50% RH | 1900 | 3.62 | - | - | [121] |
Cellulose acetate phthalate (CAP) | 25 °C, 52% RH | 69.8–116 | - | - | - | [128] |
Chitosan (Ch) | 25 °C, 100/50% RH | 490 | 25 °C, 93% RH | 0.0014 | - | [129] |
25 °C, 53% RH | 181 | - | - | - | [127] | |
Gellan gum (GG) | 21 °C, 0/54% RH | 158 | - | - | - | [130,131] |
Guar gum (GUG), | 25 °C, 53% RH | 128 | - | - | - | [132] |
Resistant starch (RS) | 25 °C, 50% RH | 1.17 × 104 | - | - | - | [108,133] |
Hydroxypropyl cellulose - poloxamer (HPCP), | 30 °C, 11% RH | 52–66 | 30 °C, 0% RH | 2.59–3.2 | - | [134] |
Hydroxypropyl methylcellulose (HPMC) | 27 °C, 0/85% RH | 105 | 25 °C, 50% RH | 0.12–1.16 | - | [129,135] |
Inulin (I) | - | - | - | - | - | [136] |
Locust bean gum (LBG) | 25 °C, 53% RH | 114 | - | - | - | [132] |
Methyl cellulose (MC) | 35 °C, 0/90% RH | 55.6 | - | - | - | [137] |
25 °C, 0/75% RH | 76–92 | 30 °C, 0% RH | 2.17–12.96 | 69-743 | [129] | |
Microcrystalline cellulose (MCC) | 25 °C, 50% RH | 277 | - | - | - | [138] |
Oats protein | 25 °C, 100% RH | 760–1570 | - | - | - | [139] |
Pearl millet starch | 30 °C, 75% RH | 206 | - | - | - | [140] |
Pectin (P) | - | - | 6.6–29.5 | 472 | [129] | |
Pullulan (Pul) | 25 °C, 53% RH | 106 | 25 °C, 96% RH | - | - | [127] |
Rice bran gum (RBG) | 25 °C, 55% RH | 8 × 105 – 9.2 × 105 | 35°C, 55% RH, | 1.18 × 10−5 – 5.46 × 10−6 | - | [141] |
Starch | 23 °C, 74/50% RH | 2170 | 20 °C, 63.8% RH | 1591 | 29209 | [129] |
Starch from red sorghum (St-RedS) | 25 °C, 0/75% RH | 45.6–61.5 | - | - | - | |
St-RedS Oxidize-Acid-modified | 25 °C, 0/75% RH | 34–41.7 | - | - | - | [142] |
St-RedS Acid-modified | 25 °C, 0/75% RH | 27.9–58.7 | - | - | - | [142] |
St-RedS Acid and oxidize-modified | 25 °C, 0/75% RH | 63.4–69.1 | - | - | - | [142] |
Xanthan gum (XG) low-density | 38 °C, 0/90% RH | 0.7–0.97 | 25 °C, 90% RH | 7.43 | 21.7 | [129] |
XG high-density | 38 °C, 0/90% RH | 0.24 | 25 °C, 90% RH | 2.1 | 120 | [129] |
Yeast cell wall (YCW) | 24 °C, 10% RH | 280 | - | - | - | [143] |
Lipids | ||||||
Bee wax (BW) | 25 °C, 0/100% RH | 0.58 | 25 °C, 0% RH | 1.06 | - | [129] |
Vegetable or animal fat | 23 °C, 12/56% RH | 2.2-34.7 | - | - | - | [121] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pech-Canul, A.d.l.C.; Ortega, D.; García-Triana, A.; González-Silva, N.; Solis-Oviedo, R.L. A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings 2020, 10, 197. https://doi.org/10.3390/coatings10030197
Pech-Canul AdlC, Ortega D, García-Triana A, González-Silva N, Solis-Oviedo RL. A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings. 2020; 10(3):197. https://doi.org/10.3390/coatings10030197
Chicago/Turabian StylePech-Canul, Angel de la Cruz, David Ortega, Antonio García-Triana, Napoleón González-Silva, and Rosa Lidia Solis-Oviedo. 2020. "A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics" Coatings 10, no. 3: 197. https://doi.org/10.3390/coatings10030197
APA StylePech-Canul, A. d. l. C., Ortega, D., García-Triana, A., González-Silva, N., & Solis-Oviedo, R. L. (2020). A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings, 10(3), 197. https://doi.org/10.3390/coatings10030197