Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Takagi, A.; Nomura, K.; Ohta, H.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Carrier transport and electronic structure in amorphous oxide semiconductor. Thin Solid Films 2005, 486, 38–41. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.H.; Lee, H.J.; Ahn, T.K.; Shin, H.S.; Park, J.-S.; Jeong, J.K.; Mo, Y.-G.; Kim, H.D. High mobility bottom gate InGaZnO thin film transistor with SiOx etch stopper. Appl. Phys. Lett. 2007, 90, 212114. [Google Scholar] [CrossRef]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Hosono, H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 2006, 89, 112123. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chang, W.-Y.; Hung, C.-C. Compensating pixel circuit driving AMOLED display with a-IGZO TFTs. IEEE Electron. Dev. Lett. 2013, 34, 1166–1168. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Hirano, M.; Hosono, H. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 2009, 95, 013502. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Device characteristics improvement of a-In-Ga-Zn-O TFTs by low-temperature annealing. Thin Solid Films 2010, 518, 3017–3021. [Google Scholar] [CrossRef]
- Ji, K.H.; Kim, J.-I.; Jung, H.Y.; Park, S.Y.; Choi, R.; Kim, U.K.; Hwang, C.S.; Lee, D.; Hwang, H.; Jeong, J.K. Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 2011, 98, 103509. [Google Scholar] [CrossRef]
- Wu, H.-C.; Chien, C.-H. High performance InGaZnO thin film transistor with InGaZnO source and drain electrodes. Appl. Phys. Lett. 2013, 102, 062103. [Google Scholar] [CrossRef] [Green Version]
- Tak, Y.J.; Yoon, D.H.; Yoon, S.; Choi, U.H.; Sabri, M.M.; Ahn, B.; Kim, H.J. Enhanced electrical characteristics and stability via simultaneous ultraviolet and thermal treatment of passivated amorphous In-Ga-Zn-O thin-film transistors. ACS Appl. Mater. Interfaces 2014, 6, 6399–6405. [Google Scholar] [CrossRef]
- Park, H.-W.; Choi, M.-J.; Jo, Y.C.; Chung, K.-B. Low temperature processed InGaZnO thin film transistor using the combination of hydrogen irradiation and annealing. Appl. Surf. Sci. 2014, 321, 520–524. [Google Scholar] [CrossRef]
- Ahn, B.D.; Park, J.-S.; Chung, K.B. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature. Appl. Phys. Lett. 2014, 105, 163505. [Google Scholar] [CrossRef]
- Noh, H.-K.; Chang, K.J.; Ryu, B.; Lee, W.-J. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors. Phys. Rev. B 2011, 84, 115205. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Robertson, J. Hydrogen and the light-induced bias instability mechanism in amorphous oxide semiconductors. Sci. Rep. 2017, 7, 16858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, S.-M.; Kim, H.-R.; Jang, H.-W.; Yang, J.-H.; Mamoru, F.; Yoon, S.-M. Improvement in bias-stress and long-term stabilities for In-Ga-Zn-O thin-film transistors using solution-process-compatible polymeric gate insulator. Org. Electron. 2019, 71, 7–13. [Google Scholar] [CrossRef]
- Snead, L.L.; Zinkle, S.J.; Hay, J.C.; Osborne, M.C. Amorphization of SiC under ion and neutron irradiation. Nucl. Instrum. Methods Phys. Res. B 1998, 141, 123–132. [Google Scholar] [CrossRef]
- Bates, J.B.; Hendricks, R.W.; Shaffer, L.B. Neutron irradiation effects and structure of noncrystalline SiO2. J. Chem. Phys. 1974, 61, 4163–4176. [Google Scholar] [CrossRef]
- Yano, T.; Ichikawa, K.; Akiyoshi, M.; Tachi, Y. Neutron irradiation damage in aluminum oxide and nitride ceramics up to a fluence of 4.2×1026 n/m2. J. Nuclear Mater. 2000, 283–287, 947–951. [Google Scholar] [CrossRef]
- Ishida, T.; Kobayashi, H.; Nakako, Y. Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. J. Appl. Phys. 1993, 73, 4344–4350. [Google Scholar] [CrossRef]
- Walsh, A. Surface oxygen vacancy origin of electron accumulation in indium oxide. Appl. Phys. Lett. 2011, 98, 261910. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.-B.; Seo, H.; Long, J.P.; Lucovsky, G. Suppression of defect states in HfSiON gate dielectric films on n-type Ge(100) substrates. Appl. Phys. Lett. 2008, 93, 182903. [Google Scholar] [CrossRef]
- Cai, J.; Han, D.; Geng, Y.; Wang, W.; Wang, L.; Zhang, S.; Wang, Y. High-performance transparent AZO TFTs fabricated on glass substrate. IEEE Transac. Electron. Dev. 2013, 60, 2432–2435. [Google Scholar] [CrossRef]
- Fuh, C.-S.; Liu, P.-T.; Chou, Y.-T.; Teng, L.-F.; Sze, S.M. Role of oxygen in amorphous In-Ga-Zn-O thin film transistor for ambient stability. ECS J. Solid State Sci. Technol. 2013, 2, Q1–Q5. [Google Scholar] [CrossRef]
Neutron Irradiation Time (s) | μsat (cm2/V·s) | μlin (cm2/V·s) | Vth (V) | S.S (V/decade) | ION/IOFF |
---|---|---|---|---|---|
0 | 8.84 ± 0.88 | 5.11 ± 0.51 | 2.55 ± 0.38 | 0.53 ± 0.05 | 9.68 × 105 ± 4.84 × 104 |
10 | 10.60 ± 0.53 | 10.39 ± 0.73 | 2.04 ± 0.20 | 0.36 ± 0.04 | 1.78 × 106 ± 8.90 × 104 |
100 | 7.98 ± 0.56 | 5.50 ± 0.55 | 2.02 ± 0.20 | 0.61 ± 0.06 | 1.25 × 106 ± 6.25 × 104 |
1000 | 7.69 ± 0.77 | 4.22 ± 0.42 | 1.84 ± 0.18 | 0.67 ± 0.07 | 1.23 × 106 ± 6.15 × 104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Hong, J.; Jun, B.-H.; Chung, K.-B. Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors. Coatings 2020, 10, 147. https://doi.org/10.3390/coatings10020147
Kwon S, Hong J, Jun B-H, Chung K-B. Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors. Coatings. 2020; 10(2):147. https://doi.org/10.3390/coatings10020147
Chicago/Turabian StyleKwon, Sera, Jongin Hong, Byung-Hyuk Jun, and Kwun-Bum Chung. 2020. "Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors" Coatings 10, no. 2: 147. https://doi.org/10.3390/coatings10020147
APA StyleKwon, S., Hong, J., Jun, B.-H., & Chung, K.-B. (2020). Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors. Coatings, 10(2), 147. https://doi.org/10.3390/coatings10020147