Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Takagi, A.; Nomura, K.; Ohta, H.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Carrier transport and electronic structure in amorphous oxide semiconductor. Thin Solid Films 2005, 486, 38–41. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.H.; Lee, H.J.; Ahn, T.K.; Shin, H.S.; Park, J.-S.; Jeong, J.K.; Mo, Y.-G.; Kim, H.D. High mobility bottom gate InGaZnO thin film transistor with SiOx etch stopper. Appl. Phys. Lett. 2007, 90, 212114. [Google Scholar] [CrossRef]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Hosono, H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 2006, 89, 112123. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chang, W.-Y.; Hung, C.-C. Compensating pixel circuit driving AMOLED display with a-IGZO TFTs. IEEE Electron. Dev. Lett. 2013, 34, 1166–1168. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Hirano, M.; Hosono, H. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 2009, 95, 013502. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Device characteristics improvement of a-In-Ga-Zn-O TFTs by low-temperature annealing. Thin Solid Films 2010, 518, 3017–3021. [Google Scholar] [CrossRef]
- Ji, K.H.; Kim, J.-I.; Jung, H.Y.; Park, S.Y.; Choi, R.; Kim, U.K.; Hwang, C.S.; Lee, D.; Hwang, H.; Jeong, J.K. Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 2011, 98, 103509. [Google Scholar] [CrossRef]
- Wu, H.-C.; Chien, C.-H. High performance InGaZnO thin film transistor with InGaZnO source and drain electrodes. Appl. Phys. Lett. 2013, 102, 062103. [Google Scholar] [CrossRef]
- Tak, Y.J.; Yoon, D.H.; Yoon, S.; Choi, U.H.; Sabri, M.M.; Ahn, B.; Kim, H.J. Enhanced electrical characteristics and stability via simultaneous ultraviolet and thermal treatment of passivated amorphous In-Ga-Zn-O thin-film transistors. ACS Appl. Mater. Interfaces 2014, 6, 6399–6405. [Google Scholar] [CrossRef]
- Park, H.-W.; Choi, M.-J.; Jo, Y.C.; Chung, K.-B. Low temperature processed InGaZnO thin film transistor using the combination of hydrogen irradiation and annealing. Appl. Surf. Sci. 2014, 321, 520–524. [Google Scholar] [CrossRef]
- Ahn, B.D.; Park, J.-S.; Chung, K.B. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature. Appl. Phys. Lett. 2014, 105, 163505. [Google Scholar] [CrossRef]
- Noh, H.-K.; Chang, K.J.; Ryu, B.; Lee, W.-J. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors. Phys. Rev. B 2011, 84, 115205. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Robertson, J. Hydrogen and the light-induced bias instability mechanism in amorphous oxide semiconductors. Sci. Rep. 2017, 7, 16858. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.-M.; Kim, H.-R.; Jang, H.-W.; Yang, J.-H.; Mamoru, F.; Yoon, S.-M. Improvement in bias-stress and long-term stabilities for In-Ga-Zn-O thin-film transistors using solution-process-compatible polymeric gate insulator. Org. Electron. 2019, 71, 7–13. [Google Scholar] [CrossRef]
- Snead, L.L.; Zinkle, S.J.; Hay, J.C.; Osborne, M.C. Amorphization of SiC under ion and neutron irradiation. Nucl. Instrum. Methods Phys. Res. B 1998, 141, 123–132. [Google Scholar] [CrossRef]
- Bates, J.B.; Hendricks, R.W.; Shaffer, L.B. Neutron irradiation effects and structure of noncrystalline SiO2. J. Chem. Phys. 1974, 61, 4163–4176. [Google Scholar] [CrossRef]
- Yano, T.; Ichikawa, K.; Akiyoshi, M.; Tachi, Y. Neutron irradiation damage in aluminum oxide and nitride ceramics up to a fluence of 4.2×1026 n/m2. J. Nuclear Mater. 2000, 283–287, 947–951. [Google Scholar] [CrossRef]
- Ishida, T.; Kobayashi, H.; Nakako, Y. Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. J. Appl. Phys. 1993, 73, 4344–4350. [Google Scholar] [CrossRef]
- Walsh, A. Surface oxygen vacancy origin of electron accumulation in indium oxide. Appl. Phys. Lett. 2011, 98, 261910. [Google Scholar] [CrossRef]
- Chung, K.-B.; Seo, H.; Long, J.P.; Lucovsky, G. Suppression of defect states in HfSiON gate dielectric films on n-type Ge(100) substrates. Appl. Phys. Lett. 2008, 93, 182903. [Google Scholar] [CrossRef]
- Cai, J.; Han, D.; Geng, Y.; Wang, W.; Wang, L.; Zhang, S.; Wang, Y. High-performance transparent AZO TFTs fabricated on glass substrate. IEEE Transac. Electron. Dev. 2013, 60, 2432–2435. [Google Scholar] [CrossRef]
- Fuh, C.-S.; Liu, P.-T.; Chou, Y.-T.; Teng, L.-F.; Sze, S.M. Role of oxygen in amorphous In-Ga-Zn-O thin film transistor for ambient stability. ECS J. Solid State Sci. Technol. 2013, 2, Q1–Q5. [Google Scholar] [CrossRef]
Neutron Irradiation Time (s) | μsat (cm2/V·s) | μlin (cm2/V·s) | Vth (V) | S.S (V/decade) | ION/IOFF |
---|---|---|---|---|---|
0 | 8.84 ± 0.88 | 5.11 ± 0.51 | 2.55 ± 0.38 | 0.53 ± 0.05 | 9.68 × 105 ± 4.84 × 104 |
10 | 10.60 ± 0.53 | 10.39 ± 0.73 | 2.04 ± 0.20 | 0.36 ± 0.04 | 1.78 × 106 ± 8.90 × 104 |
100 | 7.98 ± 0.56 | 5.50 ± 0.55 | 2.02 ± 0.20 | 0.61 ± 0.06 | 1.25 × 106 ± 6.25 × 104 |
1000 | 7.69 ± 0.77 | 4.22 ± 0.42 | 1.84 ± 0.18 | 0.67 ± 0.07 | 1.23 × 106 ± 6.15 × 104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Hong, J.; Jun, B.-H.; Chung, K.-B. Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors. Coatings 2020, 10, 147. https://doi.org/10.3390/coatings10020147
Kwon S, Hong J, Jun B-H, Chung K-B. Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors. Coatings. 2020; 10(2):147. https://doi.org/10.3390/coatings10020147
Chicago/Turabian StyleKwon, Sera, Jongin Hong, Byung-Hyuk Jun, and Kwun-Bum Chung. 2020. "Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors" Coatings 10, no. 2: 147. https://doi.org/10.3390/coatings10020147
APA StyleKwon, S., Hong, J., Jun, B.-H., & Chung, K.-B. (2020). Improvement of Electrical Performance by Neutron Irradiation Treatment on IGZO Thin Film Transistors. Coatings, 10(2), 147. https://doi.org/10.3390/coatings10020147