Quantum Chemical and Monte Carlo Simulation Studies on Inhibition Performance of Caffeine and Its Derivatives against Corrosion of Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantum Chemical Calculations
2.2. Monte Carlo Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Umoren, S.A.; Solomon, M.M.; Obot, I.B.; Sulieman, R.K. A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals. J. Ind. Eng. Chem. 2019, 76, 91–115. [Google Scholar] [CrossRef]
- Xhanari, K.; Finšgar, M.; Hrnčič, M.K.; Maver, U.; Knez, Ž.; Seiti, B. Green corrosion inhibitors for aluminium and its alloys: A review. RSC Adv. 2017, 7, 27299–27330. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Purwoko, A.A.; Rahmawati; Asnawati, D.; Hamdiani, I.S.; Nuryono. Experimental and Theoretical Studies of (2R)-5-hydroxy-7-methoxy-2-phenyl-2, 3-dihydrochromen-4-one as corrosion inhibitor for Iron in Hydrochloric Acid. Int. J. Electrochem. Sci. 2019, 14, 11110–11121. [Google Scholar] [CrossRef]
- Sedik, A.; Lerari, D.; Salci, A.; Athmani, S.; Bachari, K.; Gecibesler, İ.H.; Solmaz, R. Dardagan Fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: Electrochemical and surface morphological studies. J. Taiwan Inst. Chem. Eng. 2020, 107, 189–200. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Purwoko, A.A.; Ilhamsyah, I.; Hamdiani, S.; Suhendra, D.; Nuryono, N.; Bundjali, B. A combined experimental and theoretical study of (E)-ethyl 3-(4-methoxyphenyl) acrylate as corrosion inhibitor of iron in 1 M HCl solutions. Int. J. Corros. Scale Inhib. 2018, 7, 633–647. [Google Scholar] [CrossRef]
- Vu, N.S.H.; Binh, P.M.Q.; Ai, D.V.; Thu, V.T.H.; van Hien, P.; Panaitescu, C.; Nam, N.D. Combined experimental and computational studies on corrosion inhibition of Houttuynia cordata leaf extract for steel in HCl medium. J. Mol. Liq. 2020, 113787. [Google Scholar] [CrossRef]
- Verma, D.K.; Al Fantazi, A.; Verma, C.; Khan, F.; Asatkar, A.; Hussain, C.M.; Ebenso, E.E. Experimental and computational studies on hydroxamic acids as environmental friendly chelating corrosion inhibitors for mild steel in aqueous acidic medium. J. Mol. Liq. 2020, 113651. [Google Scholar] [CrossRef]
- Faiz, M.; Zahari, A.; Awang, K.; Hussin, H. Corrosion inhibition on mild steel in 1 M HCl solution by Cryptocarya nigra extracts and three of its constituents (alkaloids). RSC Adv. 2002, 10, 6547–6562. [Google Scholar] [CrossRef] [Green Version]
- Ngouné, B.; Pengou, M.; Nanseu-Njiki, C.P.; Ngameni, E. A comparative study using solution analysis, electrochemistry and mass change for the inhibition of carbon steel by the plant alkaloid Voacangine. Corros. Eng. Sci. Technol. 2020, 55, 138–144. [Google Scholar] [CrossRef]
- Thomas, A.; Prajila, M.; Shainy, K.M.; Joseph, A. A green approach to corrosion inhibition of mild steel in hydrochloric acid using fruit rind extract of Garcinia indica (Binda). J. Mol. Liq. 2020, 113369. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M.; Madhankumar, A.; Obot, I.B. Exploration of natural polymers for use as green corrosion inhibitors for AZ31 magnesium alloy in saline environment. Carbohydr. Polym. 2020, 230, 115466. [Google Scholar] [CrossRef]
- Dutta, A.; Saha, S.K.; Adhikari, U.; Banerjee, P.; Sukul, D. Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution: A combined experimental and theoretical approach. Corros. Sci. 2017, 123, 256–266. [Google Scholar] [CrossRef]
- Hamidon, T.S.; Hussin, M.H. Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Prog. Org. Coat. 2020, 140, 105478. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.J. Caffeine and nicotine in 3% NaCl solution with CO2 as corrosion inhibitors for low carbon steel. RSC Adv. 2016, 6, 70226–70236. [Google Scholar] [CrossRef]
- Gudić, S.; Oguzie, E.E.; Radonić, A.; Vrsalović, L.; Smoljko, I.; Kliškić, M. Inhibition of copper corrosion in chloride solution by caffeine isolated from black tea. Maced. J. Chem. Chem. Eng. 2014, 33, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Fallavena, T.; Antonow, M.; Gonçalves, R.S. Caffeine as non-toxic corrosion inhibitor for copper in aqueous solutions of potassium nitrate. Appl. Surf. Sci. 2006, 253, 566–571. [Google Scholar] [CrossRef]
- Rajendran, S.; Amalraj, A.J.; Joice, M.J.; Anthony, N.; Trivedi, D.C.; Sundaravadivelu, M. Corrosion inhibition by the caffeine-Zn2+ system. Corros. Rev. 2004, 22, 233–248. [Google Scholar] [CrossRef]
- da Trindade, L.G.; Goncalves, R.S. Evidence of caffeine adsorption on a low-carbon steel surface in ethanol. Corros. Sci. 2009, 51, 1578–1583. [Google Scholar] [CrossRef]
- Ebadi, M.; Basirun, W.J.; Leng, S.Y.; Mahmoudian, M.R. Investigation of corrosion inhibition properties of caffeine on nickel by electrochemical techniques. Int. J. Electrochem. Sci. 2012, 7, 8052–8063. [Google Scholar]
- de Souza, F.S.; Giacomelli, C.; Gonçalves, R.S.; Spinelli, A. Adsorption behavior of caffeine as a green corrosion inhibitor for copper. Mater. Sci. Eng. C 2012, 32, 2436–2444. [Google Scholar] [CrossRef]
- Ammouchi, N.; Allal, H.; Belhocine, Y.; Bettaz, S.; Zouaoui, E. DFT computations and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum. J. Mol. Liq. 2020, 300, 112309. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Purwoko, A.A.; Wajdi, F.; Sumarlan, I.; Hamdiani, S. Theoretical study of the substituent effect on corrosion inhibition performance of benzimidazole and its derivatives. Int. J. Corros. Scale Inhib. 2019, 8, 673–688. [Google Scholar] [CrossRef]
- Obot, I.B.; Macdonald, D.D.; Gasem, Z.M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corros. Sci. 2015, 99, 1–30. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Hamdiani, S.; Kurniawan, M.A.; Nuryono, N. Influence of macrocyclic ring size on the corrosion inhibition efficiency of dibenzo crown ether: A density functional study. Indones. J. Chem. 2017, 17, 431–438. [Google Scholar] [CrossRef]
- Hsissou, R.; Benhiba, F.; Abbout, S.; Dagdag, O.; Benkhaya, S.; Berisha, A.; Elharfi, A. Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations. Inorg. Chem. Commun. 2020, 107858. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Purwoko, A.A.; Hakim, A.; Savalas, L.R.T.; Rahmawati, R.; Hamdiani, S.; Nuryono, N. Ab initio MP2 and DFT studies of ethyl-p-methoxycinnamate and its derivatives as corrosion inhibitors of iron in acidic medium. J. Phys. Conf. Ser. 2019, 1402, 055046. [Google Scholar] [CrossRef]
- Karakus, N.; Sayin, K. The investigation of corrosion inhibition efficiency on some benzaldehyde thiosemicarbazones and their thiole tautomers: Computational study. J. Taiwan Inst. Chem. Eng. 2015, 48, 95–102. [Google Scholar] [CrossRef]
- El Ibrahimi, B.; Jmiai, A.; Bazzi, L.; El Issami, S. Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab J. Chem. 2020, 13, 740–771. [Google Scholar] [CrossRef]
- Sasikumar, Y.; Adekunle, A.S.; Olasunkanmi, L.O.; Bahadur, I.; Baskar, R.; Kabanda, M.M.; Ebenso, E.E. Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J. Mol. Liq. 2015, 211, 105–118. [Google Scholar] [CrossRef]
- Obot, I.B.; Haruna, K.; Saleh, T.A. Atomistic Simulation: A Unique and Powerful Computational Tool for Corrosion Inhibition Research. Arab J. Sci. Eng. 2019, 44, 1–32. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, C.; Guo, L.; Kandemirli, F.; Tüzün, B.; Uğurlu, İ.; Saraçoğlu, M. Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron. J. Mol. Liq. 2016, 219, 497–504. [Google Scholar] [CrossRef]
- Kaya, S.; Guo, L.; Kaya, C.; Tüzün, B.; Obot, I.B.; Touir, R.; Islam, N. Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron. J. Taiwan Inst. Chem. Eng. 2016, 65, 522–529. [Google Scholar] [CrossRef]
- Adamo, C.; Jacquemin, D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Harding, L.B.; Klippenstein, S.J.; Jasper, A.W. Ab initio methods for reactive potential surfaces. Phys. Chem. Chem. Phys. 2017, 9, 4055–4070. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G. No. 3 Gaussian; Revision 02; Gaussian09, Inc.: Wallingford, UK, 2009; p. 4. [Google Scholar]
- Hadisaputra, S.; Canaval, L.R.; Pranowo, H.D.; Armunanto, R. Theoretical study of substituent effects on Cs+/Sr 2+–dibenzo-18-crown-6 complexes. Monat. Chem. 2014, 145, 737–745. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M. DFT-B3LYP, NPA-, and QTAIM-based study of the physical properties of [M (II)(H2O)2(15-crown-5)](M=Mn, Fe, Co, Ni, Cu, Zn) complexes. J. Phys. Chem. A 2011, 115, 5592–5601. [Google Scholar] [CrossRef]
- Koopmans, T. Über ydie zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Islam, N.; Chandra Ghosh, D. A new algorithm for the evaluation of the global hardness of polyatomic molecules. Mol. Phys. 2011, 109, 917–931. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Yang, W.; Parr, R.G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. USA 1985, 82, 6723–6726. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.G. Hard and soft acids and bases—the evolution of a chemical concept. Coord. Chem. Rev. 1990, 100, 403–425. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar] [CrossRef]
- Sastri, V.S.; Perumareddi, J.R. Molecular orbital theoretical studies of some organic corrosion inhibitors. Corros. Sci. 1997, 53, 617–622. [Google Scholar] [CrossRef]
- Obot, I.B.; Gasem, Z.M. Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros. Sci. 2014, 83, 359–366. [Google Scholar] [CrossRef]
- Khaled, K.F. Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulphuric acid by some green corrosion inhibitors. J. Solid State Electrochem. 2009, 13, 1743–1756. [Google Scholar] [CrossRef]
- Khaled, K.F.; El-Maghraby, A. Experimental, Monte Carlo and molecular dynamics simulations to investigate corrosion inhibition of mild steel in hydrochloric acid solutions. Arab. J. Chem. 2014, 7, 319–326. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulations: From Algorithms to Applications, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Madkour, L.H.; Kaya, S.; Obot, I.B. Computational, Monte Carlo simulation and experimental studies of some arylazotriazoles (AATR) and their copper complexes in corrosion inhibition process. J. Mol. Liq. 2018, 260, 351–374. [Google Scholar] [CrossRef]
- Tang, J.; Qiu, R.; Chen, J.; Ao, B. Diffusion behavior of hydrogen in oxygen saturated and unsaturated plutonium dioxide: An ab initio molecular dynamics study. J. Alloys Compd. 2020, 834, 155113. [Google Scholar] [CrossRef]
- Sutor, D.J. The structures of the pyrimidines and purines. VII. The crystal structure of caffeine. Acta Cryst. 1958, 11, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Ford, K.A.; Ebisuzaki, Y.; Boyle, P.D. Methylxanthines. II. Anhydrous Theobromine. Acta Cryst. Sec. C Cryst. Struct. Commun. 1998, 54, 1980–1983. [Google Scholar] [CrossRef]
- Ebisuzaki, Y.; Boyle, P.D.; Smith, J.A. Methylxanthines. i. anhydrous theophylline. Acta Cryst. Sec. C Cryst. Struct. Commun. 1997, 53, 777–779. [Google Scholar] [CrossRef]
- Feyer, V.; Plekan, O.; Richter, R.; Coreno, M.; Prince, K.C. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine. Chem. Phys. 2019, 358, 3–38. [Google Scholar] [CrossRef]
- Ajò, D.; Cingi, M.B.; Fragalá, I.; Granozzi, G. UV Phoelectron Spectra of Biological Xanthines: Theophylline, Theobromine and Caffeine. Spectrosc. Lett. 1977, 10, 757–761. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Purwoko, A.A.; Wirayani, Y.; Ulfa, M.; Hamdiani, S. Density functional and perturbation calculation on the corrosion inhibition performance of benzylnicotine and its derivatives. AIP Conf. Proc. 2020, 243, 020006. [Google Scholar] [CrossRef]
- Dobeš, P.; Otyepka, M.; Strnad, M.; Hobza, P. Interaction Energies for the Purine Inhibitor Roscovitine with Cyclin-Dependent Kinase 2: Correlated Ab Initio Quantum-Chemical, DFT and Empirical Calculations. Chem. Euro. J. 2006, 12, 4297–4304. [Google Scholar] [CrossRef]
- Reimers, J.R.; Cai, Z.L.; Bilić, A.; Hush, N.S. The Appropriateness of Density-Functional Theory for the Calculation of Molecular Electronics Properties. Ann. N. Y. Acad. Sci. 2003, 1006, 235–251. [Google Scholar] [CrossRef]
- Kokalj, A.; Kovačević, N. On the consistent use of electrophilicity index and HSAB-based electron transfer and its associated change of energy parameters. Chem. Phys. Lett. 2011, 507, 181–184. [Google Scholar] [CrossRef]
- Siaka, A.A.; Eddy, N.O.; Idris, S.; Magaji, L. Experimental and computational study of corrosion potentials of penicillin G. Res. J. Appl. Sci. 2011, 6, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Eddy, N.O.; Stoyanov, S.R.; Ebenso, E.E. Fluoroquinolones as corrosion inhibitors for mild steel in acidic medium; experimental and theoretical studies. Int. J. Electrochem. Sci. 2010, 5, 1127–1150. [Google Scholar]
- Shi, W.; Xia, M.; Lei, W.; Wang, F. Molecular dynamics study of polyether polyamino methylene phosphonates as an inhibitor of anhydrite crystal. Desalination 2013, 322, 137–143. [Google Scholar] [CrossRef]
- Umoren, S.A.; Obot, I.B.; Madhankumar, A.; Gasem, Z.M. Effect of degree of hydrolysis of polyvinyl alcohol on the corrosion inhibition of steel: Theoretical and experimental studies. J. Adhe. Sci. Tech. 2015, 29, 271–295. [Google Scholar] [CrossRef]
Bond | Caffeine | Theophyllien | Theobromine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp | B3LYP | Bond | Exp | B3LYP | Bond Angle | Exp | B3LYP | Bond Angle | Exp | B3LYP | Bond Angle | Exp | B3LYP | |
N1-C2 | 1.42 | 14.083 | N1-C2 | 1.41 | 1.408 | C2-N1-C6 | 126.6 | 126.821 | N1-C2 | 1.381 | 1.401 | C2-N1-C6 | 1291 | 130.007 |
N1-C6 | 1.36 | 14.165 | N1-C6 | 1.41 | 1.417 | C2-N1-C10 | 117.1 | 115.160 | N1-C6 | 1.397 | 1.407 | C2-N1-H1 | 116.7 | 114.059 |
N1-C10 | 1.48 | 14.665 | N1-C10 | 1.48 | 1.466 | C6-N1-C10 | 116.3 | 118.018 | N1-H1 | 0.85 | 1.013 | C6-N1-H1 | 114.2 | 115.933 |
C2-N3 | 1.35 | 13.907 | C2-N3 | 1.36 | 1.393 | N1-C2-N3 | 117.4 | 117.267 | C2-N3 | 1.377 | 1.390 | N1-C2-N3 | 116.4 | 115.304 |
C2-O11 | 1.19 | 12.226 | C2-O11 | 1.22 | 1.222 | N1-C2-O11 | 120.2 | 121.383 | C2-O11 | 1.231 | 1.220 | N1-C2-O11 | 121.5 | 121.926 |
N3-C4 | 1.42 | 13.761 | N3-C4 | 1.38 | 1.375 | N3-C2-O11 | 122.4 | 121.349 | N3-C4 | 1.377 | 1.380 | N3-C2-O11 | 112.1 | 122.768 |
N3-C12 | 1.50 | 14.622 | N3-C12 | 1.46 | 1.462 | C2-N3-C4 | 119.7 | 119.660 | N3-C12 | 1.473 | 1.462 | C2-N3-C4 | 118.9 | 119.647 |
C4-C5 | 1.32 | 13.821 | C4-C5 | 1.34 | 1.378 | C2-N3-C12 | 120.1 | 118.109 | C4-C5 | 1.364 | 1.385 | C2-N3-C12 | 119.2 | 118.221 |
C4-N9 | 1.31 | 13.596 | C4-N9 | 1.35 | 1.363 | C4-N3-C12 | 120.2 | 122.229 | C4-N9 | 1.363 | 1.359 | C4-N3-C12 | 121.8 | 122.131 |
C5-C6 | 1.44 | 14.345 | C5-C6 | 1.43 | 1.432 | C4-C5-N7 | 105.4 | 104.763 | C5-C6 | 1.426 | 1.436 | N3-C4-C5 | 122.4 | 122.212 |
C5-N7 | 1.41 | 13.892 | C5-N7 | 1.38 | 1.382 | C6-C5-N7 | 129.8 | 130.877 | C5-N7 | 1.388 | 1.387 | N3-C4-N9 | 124.9 | 126.188 |
C6-O13 | 1.26 | 12.300 | C6-O13 | 1.21 | 1.226 | N1-C6-C5 | 110.1 | 110.772 | C6-O13 | 1.225 | 1.227 | C5-C4-N9 | 112.7 | 111.598 |
N7-C8 | 1.32 | 13.558 | N7-C8 | 1.32 | 1.357 | N1-C6-O13 | 122.0 | 123.169 | N7-C8 | 1.343 | 1.355 | C4-C5-C6 | 122.9 | 123.104 |
N7-C14 | 1.47 | 14.619 | N7-H7 | 0.90 | 1.010 | C5-C6-O13 | 127.9 | 126.057 | N7-C10 | 1.469 | 1.462 | C4-C5-N7 | 105.1 | 105.144 |
C8-N9 | 1.34 | 13.300 | C8-N9 | 1.31 | 1.327 | C5-N7-C8 | 105.7 | 128.262 | C8-N9 | 1.339 | 1.330 | C6-C5-N7 | 132.0 | 131.750 |
- | - | - | C8-H8 | 1.02 | 1.081 | C5-N7-H7 | 128.0 | 106.529 | C8-H8 | 1.03 | 1.082 | N1-C6-C5 | 110.3 | 109.722 |
Compound | EHOMO | ELUMO | ∆E | I | A | χ | η | ∆N |
---|---|---|---|---|---|---|---|---|
Caffeine | ||||||||
B3LYP/6-31G(d) | −5.9576 | −0.8781 | −5.0795 | 5.9576 | 0.8781 | 3.4178 | 2.5397 | 0.2090 |
B3LYP/6-311++G(dp) | −6.3310 | −1.3785 | −4.9524 | 6.3310 | 1.3785 | 3.8547 | 2.4762 | 0.1262 |
MP2/6-31G(d) | −8.5411 | 2.9102 | −11.4513 | 8.5411 (8.31) a | −2.9102 | 2.8154 | 5.7256 | 0.1453 |
MP2/6-311++Gdp | −8.7068 | 0.8095 | −9.5163 | 8.7068 | −0.8095 | 3.9486 | 4.7581 | 0.0558 |
Theobromine | ||||||||
B3LYP/6-31G(d) | −6.0401 | −0.9529 | −5.0871 | 6.0401 | 0.9529 | 3.4965 | 2.5435 | 0.1933 |
B3LYP/6−311++G(dp) | −6.4455 | −1.4966 | −4.9489 | 6.4455 | 1.4966 | 3.9710 | 2.4744 | 0.1028 |
MP2/6-31G(d) | −8.6401 | 2.8389 | −11.4799 | 8.6401 (8.31) b | −2.8389 | 2.9005 | 5.7395 | 0.1375 |
MP2/6-311++G(dp) | −8.8284 | 0.7760 | −9.6045 | 8.8284 | −0.7760 | 4.0261 | 4.8022 | 0.0472 |
Theophylline | ||||||||
B3LYP/6-31G(d) | −6.0735 | −0.9208 | −5.1527 | 6.0735 | 0.9208 | 3.4972 | 2.5763 | 0.1907 |
B3LYP/6−311++G(dp) | −6.4828 | −1.4362 | −5.0466 | 6.4828 | 1.4362 | 3.9595 | 2.5233 | 0.1031 |
MP2/6-31G(d) | −8.6866 | 2.8879 | −11.5741 | 8.6866 (8.30) b | −2.8879 | 2.8993 | 5.7873 | 0.1365 |
MP2/6-311++G(dp) | −8.8779 | 0.7436 | −9.62169 | 8.8779 | −0.7436 | 4.0671 | 4.8108 | 0.0429 |
Compound | EHOMO | ELUMO | ∆E | I | A | χ | η | ∆N |
---|---|---|---|---|---|---|---|---|
Protonated | ||||||||
B3LYP/6-31G(d) | −10.6562 | −5.6330 | −5.0232 | 10.6562 | 5.6330 | 8.1446 | 2.5116 | −0.7295 |
B3LYP/6-311++G(dp) | −10.8929 | −5.9524 | −4.9405 | 10.8929 | 5.9524 | 8.4227 | 2.4702 | −0.7980 |
MP2/6-31G(d) | −13.2837 | −1.6865 | −11.597 | 13.2837 | 1.6865 | 7.4851 | 5.7986 | −0.2591 |
MP2/6-311++Gdp | −13.3526 | −2.4631 | −10.889 | 13.3526 | 2.4631 | 7.9079 | 5.4447 | −0.3147 |
Protonated | ||||||||
B3LYP/6-31G(d) | −10.7909 | −5.8177 | −4.9731 | 10.7909 | 5.8177 | 8.3043 | 2.4865 | −0.7690 |
B3LYP/6-311++G(dp) | −11.0442 | −6.1633 | −4.8809 | 11.0442 | 6.1633 | 8.6038 | 2.4404 | −0.8448 |
MP2/6-31G(d) | −13.4056 | −1.8754 | −11.5302 | 13.4056 | 1.8754 | 7.6405 | 5.7651 | −0.2741 |
MP2/6-311++Gdp | −13.4870 | −2.5374 | −10.9495 | 13.4870 | 2.5374 | 8.0122 | 5.4747 | −0.3225 |
Protonated | ||||||||
B3LYP/6-31G(d) | −10.8252 | −5.9495 | −4.8757 | 10.8252 | 5.9495 | 8.3873 | 2.4378 | −0.8013 |
B3LYP/6-311++G(dp) | −11.0780 | −6.2885 | −4.7894 | 11.0780 | 6.2885 | 8.6832 | 2.3947 | −0.8776 |
MP2/6-31G(d) | −13.4511 | −2.0049 | −11.4462 | 13.4511 | 2.0049 | 7.7280 | 5.7231 | −0.2837 |
MP2/6-311++Gdp | −13.5325 | −2.6169 | −10.9155 | 13.5325 | 2.6169 | 8.0747 | 5.4577 | −0.3293 |
Compound | EHOMO | ELUMO | ∆E | I | A | χ | η | ∆N |
---|---|---|---|---|---|---|---|---|
Caffeine | ||||||||
B3LYP/6-31G(d) | −5.9941 | −0.8835 | −5.1105 | 5.9941 | 0.8835 | 3.4388 | 2.5552 | 0.6968 |
B3LYP/6-311++G(dp) | −6.3421 | −1.3426 | −4.9995 | 6.3421 | 1.3426 | 3.8423 | 2.4997 | 0.6315 |
MP2/6-31G(d) | −8.5375 | 2.9459 | −11.4833 | 8.5375 | −2.9459 | 2.7958 | 5.7417 | 0.3661 |
MP2/6-311++Gdp | −8.6842 | 1.0930 | −9.7773 | 8.6842 | −1.0930 | 3.7955 | 4.8886 | 0.3277 |
Theobromine | ||||||||
B3LYP/6-31G(d) | −6.0379 | −0.9183 | −5.1195 | 6.0379 | 0.9183 | 3.4781 | 2.5597 | 0.6879 |
B3LYP/6-311++G(dp) | −6.4118 | −1.4188 | −4.9930 | 6.4118 | 1.4188 | 3.9153 | 2.4965 | 0.6178 |
MP2/6-31G(d) | −8.5922 | 2.9165 | −11.5087 | 8.5922 | −2.9165 | 2.8378 | 5.7543 | 0.3616 |
MP2/6-311++G(dp) | −8.7574 | 1.1292 | −9.8867 | 8.7574 | −1.1292 | 3.8140 | 4.9433 | 0.3222 |
Theophylline | ||||||||
B3LYP/6-31G(d) | −6.0675 | −0.8851 | −5.1824 | 6.0675 | 0.8851 | 3.4763 | 2.5912 | 0.6799 |
B3LYP/6-311++G(dp) | −6.4466 | −1.3681 | −5.0784 | 6.4466 | 1.3681 | 3.9074 | 2.5392 | 0.6089 |
MP2/6-31G(d) | −8.6347 | 2.9616 | −11.5964 | 8.6347 | −2.9616 | 2.8365 | 5.7982 | 0.3593 |
MP2/6-311++G(dp) | −8.8037 | 1.0982 | −9.9019 | 8.8037 | −1.0982 | 3.8527 | 4.9509 | 0.3178 |
Compound | EHOMO | ELUMO | ∆E | I | A | χ | η | ∆N |
---|---|---|---|---|---|---|---|---|
Protonated Caffeine | ||||||||
B3LYP/6-31G(d) | −7.0355 | −1.8084 | −5.2270 | 7.0355 | 1.8084 | 4.4219 | 2.6135 | 0.4932 |
B3LYP/6-311++G(dp) | −7.2730 | −2.1284 | −5.1445 | 7.2730 | 2.1284 | 4.7007 | 2.5722 | 0.4469 |
MP2/6-31G(d) | −9.5890 | 2.2329 | −11.8219 | 9.5890 | −2.2329 | 3.6780 | 5.9109 | 0.2809 |
MP2/6-311++Gdp | −9.6586 | 0.9875 | −10.6461 | 9.6586 | −0.9875 | 4.3355 | 5.3230 | 0.2502 |
Protonated Theobromine | ||||||||
B3LYP/6-31G(d) | −7.0736 | −1.8784 | −5.1952 | 7.0736 | 1.8784 | 4.4760 | 2.5976 | 0.4858 |
B3LYP/6-311++G(dp) | −7.3283 | −2.2250 | −5.1032 | 7.3283 | 2.2250 | 4.7766 | 2.5516 | 0.4356 |
MP2/6-31G(d) | −9.6192 | 2.1717 | −11.7909 | 9.6192 | −2.1717 | 3.7237 | 5.8954 | 0.2778 |
MP2/6-311++Gdp | −9.7005 | 1.0201 | −10.7207 | 9.7005 | −1.0201 | 4.3402 | 5.3603 | 0.2480 |
Protonated Theophylline | ||||||||
B3LYP/6-31G(d) | −7.0785 | −1.8990 | −5.1794 | 7.0785 | 1.8990 | 4.4887 | 2.5897 | 0.4848 |
B3LYP/6-311++G(dp) | −7.3321 | −2.2397 | −5.0923 | 7.3321 | 2.2397 | 4.7859 | 2.5461 | 0.4347 |
MP2/6-31G(d) | −9.6306 | 2.1760 | −11.8067 | 9.6306 | −2.1760 | 3.7272 | 5.9033 | 0.2771 |
MP2/6-311++Gdp | −9.7106 | 0.9948 | −10.7055 | 9.7106 | −0.9948 | 4.3579 | 5.35275 | 0.2467 |
Caffein | N−1 | N | N+1 | f+ | f− |
---|---|---|---|---|---|
C1 | 0.162586 | 0.155782 | 0.158459 | 0.002677 | −0.006804 |
C2 | −0.089031 | −0.148159 | −0.161602 | −0.013443 | −0.059128 |
C3 | 0.376028 | 0.469948 | 0.603219 | 0.133271 | 0.093920 |
C4 | −0.446803 | −0.411679 | −0.451646 | −0.039967 | 0.035124 |
N5 | −0.120690 | −0.102655 | −0.032743 | 0.069912 | 0.018035 |
N6 | −0.334752 | −0.256422 | −0.160822 | 0.095600 | 0.078330 |
C7 | −0.194505 | −0.206969 | −0.216473 | −0.009504 | −0.012464 |
C8 | −0.268936 | −0.270889 | −0.284398 | −0.013509 | −0.001953 |
H9 | 0.167456 | 0.195631 | 0.215417 | 0.019786 | 0.028175 |
H10 | 0.167444 | 0.195728 | 0.215478 | 0.019750 | 0.028284 |
H11 | 0.182352 | 0.195429 | 0.208032 | 0.012603 | 0.013077 |
H12 | 0.170662 | 0.182777 | 0.209048 | 0.026271 | 0.012115 |
H13 | 0.179276 | 0.198429 | 0.239475 | 0.041046 | 0.019153 |
H14 | 0.178993 | 0.198039 | 0.238854 | 0.040815 | 0.019046 |
O15 | −0.470802 | −0.410286 | −0.273299 | 0.136987 | 0.060516 |
O16 | −0.542781 | −0.382377 | −0.263297 | 0.119080 | 0.160404 |
C17 | −0.042468 | 0.256205 | 0.346290 | 0.090085 | 0.298673 |
H18 | 0.191120 | 0.255362 | 0.312937 | 0.057575 | 0.064242 |
C19 | −0.298899 | −0.337688 | −0.335998 | 0.001690 | −0.038789 |
H20 | 0.138713 | 0.190666 | 0.219476 | 0.028810 | 0.051953 |
H21 | 0.198913 | 0.209085 | 0.221788 | 0.012703 | 0.010172 |
H22 | 0.139729 | 0.194213 | 0.223975 | 0.029762 | 0.054484 |
N23 | −0.240805 | −0.208855 | −0.179672 | 0.029183 | 0.031950 |
N24 | −0.202799 | −0.161314 | −0.052499 | 0.108815 | 0.041485 |
Theobromine | −1 | 0 | 1 | f+ | f− |
C1 | 0.373874 | 0.374038 | 0.379773 | 0.005735 | 0.000164 |
C2 | 0.018911 | −0.010603 | −0.007031 | 0.003572 | −0.029514 |
C3 | −0.023784 | 0.077196 | 0.199807 | 0.122611 | 0.100980 |
C4 | −0.103393 | −0.073697 | −0.101482 | −0.027785 | 0.029696 |
N5 | −0.100676 | −0.086996 | −0.017762 | 0.069234 | 0.013680 |
N6 | −0.348486 | −0.271648 | −0.178983 | 0.092665 | 0.076838 |
C7 | −0.299243 | −0.301030 | −0.312570 | −0.011540 | −0.001787 |
H8 | 0.167920 | 0.179710 | 0.205525 | 0.025815 | 0.011790 |
H9 | 0.178711 | 0.197757 | 0.237973 | 0.040216 | 0.019046 |
H10 | 0.178561 | 0.197558 | 0.237676 | 0.040118 | 0.018997 |
O11 | −0.479782 | −0.419618 | −0.280301 | 0.139317 | 0.060164 |
O12 | −0.576362 | −0.400980 | −0.276690 | 0.124290 | 0.175382 |
C13 | −0.049400 | 0.223986 | 0.308130 | 0.084144 | 0.273386 |
H14 | 0.192142 | 0.255051 | 0.312138 | 0.057087 | 0.062909 |
C15 | −0.310541 | −0.345573 | −0.343497 | 0.002076 | −0.035032 |
H16 | 0.144336 | 0.194271 | 0.223403 | 0.029132 | 0.049935 |
H17 | 0.194748 | 0.204244 | 0.216713 | 0.012469 | 0.009496 |
H18 | 0.144840 | 0.195562 | 0.225038 | 0.029476 | 0.050722 |
N19 | −0.468999 | −0.430532 | −0.409691 | 0.020841 | 0.038467 |
N20 | −0.196793 | −0.159632 | −0.051456 | 0.108176 | 0.037161 |
H21 | 0.363416 | 0.400936 | 0.433287 | 0.032351 | 0.037520 |
Theophylline | −1 | 0 | 1 | f+ | f− |
C1 | 0.175358 | 0.167927 | 0.169995 | 0.002068 | −0.007431 |
C2 | −0.324537 | −0.373043 | −0.413192 | −0.040149 | −0.048506 |
C3 | 0.472094 | 0.544694 | 0.696139 | 0.151445 | 0.072600 |
C4 | −0.323918 | −0.264517 | −0.285707 | −0.021190 | 0.059401 |
N5 | −0.313234 | −0.259961 | −0.184856 | 0.075105 | 0.053273 |
N6 | −0.343520 | −0.256613 | −0.162417 | 0.094196 | 0.086907 |
C7 | −0.292243 | −0.291210 | −0.305278 | −0.014068 | 0.001033 |
H8 | 0.163387 | 0.176023 | 0.203266 | 0.027243 | 0.012636 |
H9 | 0.181507 | 0.201215 | 0.243740 | 0.042525 | 0.019708 |
H10 | 0.181551 | 0.201278 | 0.243833 | 0.042555 | 0.019727 |
O11 | −0.470998 | −0.407345 | −0.266334 | 0.141011 | 0.063653 |
O12 | −0.578086 | −0.399884 | −0.271699 | 0.128185 | 0.178202 |
C13 | 0.036256 | 0.275613 | 0.363617 | 0.088004 | 0.239357 |
H14 | 0.196826 | 0.262887 | 0.317711 | 0.054824 | 0.066061 |
N15 | −0.233768 | −0.196546 | −0.165706 | 0.030840 | 0.037222 |
N16 | −0.193781 | −0.151441 | −0.037230 | 0.114211 | 0.042340 |
C17 | −0.182087 | −0.194383 | −0.204253 | −0.009870 | −0.012296 |
H18 | 0.186109 | 0.200068 | 0.213343 | 0.013275 | 0.013959 |
H19 | 0.168038 | 0.197461 | 0.217926 | 0.020465 | 0.029423 |
H20 | 0.168028 | 0.197441 | 0.217894 | 0.020453 | 0.029413 |
H21 | 0.327017 | 0.370337 | 0.409207 | 0.038870 | 0.043320 |
Systems | Adsorption Energy (Inhibitor) | Adsorption Energy (Water) |
---|---|---|
Neutral Inhibitor | ||
Cu(111)/Caffeine/100 H2O | −101.0518559 | −12.5945366 |
Cu(111)/Theophylline/100 H2O | −94.78979214 | −14.61287273 |
Cu(111)/Theobromine/100 H2O | −88.07084059 | −13.9784625 |
Protonated Inhibitor | ||
Cu(111)/Caffeine/100 H2O | −110.66243318 | −15.30417885 |
Cu(111)/Theophylline/100 H2O | −102.11197491 | −13.54857608 |
Cu(111)/Theobromine/100 H2O | −97.13070946 | −13.90897810 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadisaputra, S.; Purwoko, A.A.; Savalas, L.R.T.; Prasetyo, N.; Yuanita, E.; Hamdiani, S. Quantum Chemical and Monte Carlo Simulation Studies on Inhibition Performance of Caffeine and Its Derivatives against Corrosion of Copper. Coatings 2020, 10, 1086. https://doi.org/10.3390/coatings10111086
Hadisaputra S, Purwoko AA, Savalas LRT, Prasetyo N, Yuanita E, Hamdiani S. Quantum Chemical and Monte Carlo Simulation Studies on Inhibition Performance of Caffeine and Its Derivatives against Corrosion of Copper. Coatings. 2020; 10(11):1086. https://doi.org/10.3390/coatings10111086
Chicago/Turabian StyleHadisaputra, Saprizal, Agus Abhi Purwoko, Lalu Rudyat Telly Savalas, Niko Prasetyo, Emmy Yuanita, and Saprini Hamdiani. 2020. "Quantum Chemical and Monte Carlo Simulation Studies on Inhibition Performance of Caffeine and Its Derivatives against Corrosion of Copper" Coatings 10, no. 11: 1086. https://doi.org/10.3390/coatings10111086
APA StyleHadisaputra, S., Purwoko, A. A., Savalas, L. R. T., Prasetyo, N., Yuanita, E., & Hamdiani, S. (2020). Quantum Chemical and Monte Carlo Simulation Studies on Inhibition Performance of Caffeine and Its Derivatives against Corrosion of Copper. Coatings, 10(11), 1086. https://doi.org/10.3390/coatings10111086