# Strain-Dependent Resistivity of Granular Manganite Systems: A Simple Quantitative Approach

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Results and Discussion

_{0}value between the central grains is modified as:

_{max}), depends upon the grain dimensions, increasing with decreasing D values. In Figure 3b, as an example, we show the behavior upon the grain dimensions D of both ${T}_{M}$ and Δρ

_{max}obtained for θ = 5°. With decreasing D, it is interesting to note that the ${T}_{M}$ values approach room temperature. Moreover, at least in our simple model, the effect of the tilt angle θ on the resistivity, seems to reach a saturation value for D below 50 nm. In Figure 3a, we report the Δρ values as a function of D obtained at 273 K for θ = 5°. As already mentioned, values in the range from 0.1% to 0.5% are observed.

## 3. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bhalla, A.; Guo, R.; Roy, R. The perovskite structure: A review of its role in ceramic science and technology. Mater. Res. Innov.
**2000**, 4, 3–26. [Google Scholar] [CrossRef] - Hu, Y.; Guo, Y.; Wang, Y.; Chen, Z.; Sun, X.; Feng, J.; Ming Lu, T.; Wertz, E.; Shi, J. A review on low dimensional metal halides: Vapor phase epitaxy and physical properties. J. Mater. Res.
**2017**, 32, 3992–4024. [Google Scholar] [CrossRef] - Viret, M.; Ranno, L.; Coey, J.M.D. Magnetic localization in mixed-valence manganites. Phys. Rev. B
**1997**, 55, 8067–8070. [Google Scholar] [CrossRef] [Green Version] - Guiton, B.S.; Davies, P.K. Nano-chessboard superlattices formed by spontaneous phase separation in oxides. Nat. Mater.
**2007**, 6, 586–591. [Google Scholar] [CrossRef] - Erni, R.; Abakumov, A.M.; Rossell, M.D.; Batuk, D. Nanoscale phase separation in perovskite revisited. Nat. Mater.
**2014**, 13, 216–217. [Google Scholar] [CrossRef] - Tennyson, E.M.; Doherty, T.A.S.; Stranks, S.D. Heterogeneity at multiple lenght scales in halide perovskite smiconductors. Nat. Rev. Mater.
**2019**, 4, 573–587. [Google Scholar] [CrossRef] - Dogan, F.; Lin, H.; Guilloux-Viry, M.; Pena, O. Focus on properties and applications of perovskites. Sci. Technol. Adv. Mater.
**2015**, 16, 020301. [Google Scholar] [CrossRef] - Salamon, M.B.; Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys.
**2001**, 73, 583. [Google Scholar] [CrossRef] - Haghiri-Gosnet, A.M.; Renard, J.P. CMR manganites: Physics, thin films and devices. J. Phys. D Appl. Phys.
**2003**, 36, R127. [Google Scholar] [CrossRef] - Salafranca, J.; Calderón, M.J.; Brey, L. Magnetoresistance of an all-manganite spin valve: A thin antiferromagnetic insulator sandwiched between two ferromagnetic metallic electrodes. Phys. Rev. B
**2008**, 77, 14441–14445. [Google Scholar] [CrossRef] [Green Version] - Prasad, B.; Blamire, M. Fully magnetic manganite spin filter tunnel junctions. Appl. Phys. Lett.
**2016**, 109, 132407–132411. [Google Scholar] [CrossRef] - Millis, J.; Darling, T.; Migliori, A. Quantifying strain dependence in “colossal” magnetoresistance manganites. J. Appl. Phys.
**1998**, 83, 1588–1591. [Google Scholar] [CrossRef] - Adamo, C.; Ke, X.; Wang, H.Q.; Xin, H.L.; Heeg, T.; Hawley, M.E.; Zander, W.; Schubert, J.; Schiffer, P.; Muller, D.A.; et al. Effect of biaxial strain on the electrical and magnetic properties of (001) La
_{0.7}Sr_{0.3}MnO_{3}thin films. Appl. Phys. Lett.**2009**, 95, 112504–112506. [Google Scholar] [CrossRef] - Ovsyannikov, G.A.; Shaikhulov, T.A.; Shakhunov, V.A.; Preobrazhensky, V.L.; Mathurin, T.; Tiercelin, N.; Pernod, P. Resistivity of manganite thin film under strain. J. Supercond. Novel Magn.
**2019**, 32, 2759–2763. [Google Scholar] [CrossRef] - Ahn, K.H.; Lookman, T.; Bishop, A.R. Strain-induced metal-insulator phase coexistence in perovskite manganites. Nature
**2004**, 428, 401–404. [Google Scholar] [CrossRef] - Petrov, A.Y.; Aruta, C.; Mercone, S.; Adamo, C.; Alessandri, I.; Maritato, L. Room temperature metal-insulator transition in as grown (La1-xSrx)(y)MnO3 thin films deposited by molecular beam epitaxy. Eur. Phys. J. B
**2004**, 40, 11–17. [Google Scholar] [CrossRef] - Chen, Y.H.; Wu, T.B. Thickness dependent transport properties and percolative phase separation in polycrystalline manganite thin films. Appl. Phys. Lett.
**2008**, 93, 224104. [Google Scholar] [CrossRef] - Kataria, B.; Solanki, P.; Kachr, U.; Vagadia, M.; Ravalia, A.; Keshvani, M.J.; Trivedi, P.; Venkateshvarlu, D.; Ganesan, V.; Kandasami, A.; et al. Role of strain and microstructure in chemical solution deposited La0.7Pb0.3MnO3 manganite films: Thickness dependent swift heavy ions irradiation studies. Radiat. Phys. Chem.
**2013**, 85, 173–178. [Google Scholar] [CrossRef] - Pryds, N.; Esposito, V. When two become one: An insight into 2D conductive oxide interfaces. J. Electroceram.
**2017**, 38, 1–23. [Google Scholar] [CrossRef] [Green Version] - Zhang, N.; Ding, W.; Zhong, W.; Xing, D.; Du, Y. Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3. Phys. Rev. B
**1997**, 56, 8138–8142. [Google Scholar] [CrossRef] - de Andrés, A.; García-Hernández, M.; Martínez, J.L. Conduction channels and magnetoresistance in polycrystalline manganites. Phys. Rev. B
**1999**, 60, 7328. [Google Scholar] [CrossRef] - Chen, A.; Bi, Z.; Tsai, C.-F.; Lee, J.H.; Su, Q.; Zhang, X.; Jia, Q.; MacManus-Driscoll, J.L.; Wang, H. Tunable low-field magnetoresistance in (La0. 7Sr0. 3MnO
_{3}) 0.5:(ZnO) 0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater.**2011**, 21, 2423. [Google Scholar] [CrossRef] - Cojocaru, S.; Naddeo, A.; Citro, R. Modification of the Bloch law in ferromagnetic nanostructures. Europhys. Lett.
**2014**, 106, 17001–17006. [Google Scholar] [CrossRef] [Green Version] - Malvern, L.E. Introduction to the Mechanics of a Continous Medium; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1969; ISBN 978-0134876030. [Google Scholar]
- Haus, H.A.; Melcher, J.R. Electromagnetic Fields and Energy; Prentice Hall: Englewood Cliffs, NJ, USA, 1988; ISBN 9780132490207. [Google Scholar]

**Figure 1.**(

**a**) schematic representation of adjacent grains; (

**b**) results of the fitting procedure obtained using Equation (2) in the text, for the experimental R(T) curve corresponding to a sample with D = 190 nm in [20]; (

**c**) “b” and “k” values obtained using the fitting procedure in Equation (2) for the samples characterized by different grains’ size in [20]; (

**d**) schematic representation of the grains’ chain distortion due to the deformation applied to the sample.

**Figure 2.**Percentage resistivity variations Δρ (Equation (5)) as a function of the temperature for different values of the tilt angle ( black line is for θ = 5°, red line for θ = 10°, blue line for θ = 15° and the magenta line for θ = 30°) and for different D values: (

**a**) D = 25 nm, (

**b**) D = 50 nm, (

**c**) D = 110 nm, (

**d**) D = 190 nm, (

**e**) D = 400 nm.

**Figure 3.**(

**a**) percentage resistivity variation Δρ for different D values at θ = 5° and T = 273 K; (

**b**) T

_{M}temperature (red squares) corresponding to the maximum value of the percentage resistivity variation (blue triangles) for each of the considered D values.

D [nm] | $\mathbf{\Delta}\mathit{\rho}[\%]$ |
---|---|

25 | 0.42 |

50 | 0.40 |

110 | 0.25 |

190 | 0.15 |

400 | 0.11 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

De Feo, P.; Ferraioli, F.; Coppola, N.; Maritato, L.
Strain-Dependent Resistivity of Granular Manganite Systems: A Simple Quantitative Approach. *Coatings* **2020**, *10*, 1081.
https://doi.org/10.3390/coatings10111081

**AMA Style**

De Feo P, Ferraioli F, Coppola N, Maritato L.
Strain-Dependent Resistivity of Granular Manganite Systems: A Simple Quantitative Approach. *Coatings*. 2020; 10(11):1081.
https://doi.org/10.3390/coatings10111081

**Chicago/Turabian Style**

De Feo, Pasquale, Fabrizio Ferraioli, Nunzia Coppola, and Luigi Maritato.
2020. "Strain-Dependent Resistivity of Granular Manganite Systems: A Simple Quantitative Approach" *Coatings* 10, no. 11: 1081.
https://doi.org/10.3390/coatings10111081