Effects of Heat Treatment and Tea Polyphenols on the Structure and Properties of Polyvinyl Alcohol Nanofiber Films for Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the PVA/TP Nanofiber Films
2.3. Morphology Studies
2.4. Fourier Transform Infrared Experiment
2.5. Water Resistance
2.6. Mechanical Properties
2.7. Antioxidant Activity
2.8. Color and Transparency of the Films
2.9. Antimicrobial Experiment
2.10. Statistical Analysis
3. Results
3.1. Diameters and Morphologies of the Nanofiber Films
3.2. FTIR Analysis
3.3. Water Resistance Analysis
3.4. Effect of Water Immersion on the Fiber Morphology
3.5. Mechanical Properties
3.6. Color and Transparency of the Films
3.7. Antimicrobial Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Castro López, M.D.M.; López de Dicastillo, C.; López Vilariño, J.M.; González Rodríguez, M.V. Improving the capacity of polypropylene to be used in antioxidant active films: Incorporation of plasticizer and natural antioxidants. J. Agric. Food Chem. 2013, 61, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Cömert, E.D.; Gökmen, V. Evolution of food antioxidants as a core topic of food science for a century. Food Res. Int. 2018, 105, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Sagnelli, D.; Kirkensgaard, J.J.; Giosafatto, C.V.L.; Ogrodowicz, N.; Kruczała, K.; Mikkelsen, M.S.; Maigret, J.E.; Lourdin, D.; Mortensen, K.; Blennow, A. All-natural bio-plastics using starch-betaglucan composites. Carbohydr. Polym. 2017, 172, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Jiang, Y.; Zhong, Y.; Zhao, Y.; Deng, Y.; Yue, J.; Wang, D.; Jiao, S.; Gao, H.; Chen, H.; et al. Development and characterization of nano-bilayer films composed of polyvinyl alcohol, chitosan and alginate. Food Control 2018, 86, 191–199. [Google Scholar] [CrossRef]
- Lim, M.; Kim, D.; Seo, J. Enhanced oxygen-barrier and water-resistance properties of poly (vinyl alcohol) blended with poly (acrylic acid) for packaging applications. Polym. Int. 2016, 65, 400–406. [Google Scholar] [CrossRef]
- Yang, J.M.; Fan, C.S.; Wang, N.C.; Chang, Y.H. Evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: Comparison between poly (vinyl alcohol)/chitosan blended membrane and poly (vinyl alcohol)/chitosan electrospun nanofiber composite membranes. Electrochim. Acta 2018, 266, 332–340. [Google Scholar] [CrossRef]
- Abdolmaleki, A.; Mallakpour, S.; Karshenas, A. Synthesis and characterization of new nanocomposites films using alanine-cu-functionalized graphene oxide as nanofiller and PVA as polymeric matrix for improving of their properties. J. Solid State Chem. 2017, 253, 398–405. [Google Scholar] [CrossRef]
- Pirzada1, T.; Shah, S.S. Water-Resistant Poly (vinyl alcohol)-Silica Hybrids through Sol-Gel Processing. Chem. Eng. Technol. 2014, 37, 620–626. [Google Scholar] [CrossRef]
- Noh, T.; Bando, Y.; Ota, K.; Sasaki, S.; Suzuki, A. Tear force of physically crosslinked poly (vinyl alcohol) gels with different submicrometer-scale network structures. J. Appl. Polym. Sci. 2015, 132, 1–6. [Google Scholar] [CrossRef]
- Liu, F.; Ni, Q.Q.; Murakami, Y. Preparation of magnetic polyvinyl alcohol composite nanofibers with homogenously dispersed nanoparticles and high water resistance. Text. Resm. J. 2013, 83, 510–518. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S. Electrospun zinc oxide/poly (vinyl alcohol) nanofibrous membranes: In vitro and wear trial evaluation of antimicrobial activity. Text. Res. J. 2015, 85, 1999–2008. [Google Scholar] [CrossRef]
- Xie, Z.L.; Hoang, M.; Ng, D.; Doherty, C.; Hill, A.; Gray, S. Effect of heat treatment on pervaporation separation of aqueous salt solution using hybrid PVA/MA/TEOS membrane. Sep. Purif. Technol. 2014, 127, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Luo, J.; Wang, X.Y.; Gao, C.X.; Ge, M.Q. Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption. Nanoscale Res. Lett. 2015, 10, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano, A.I.; Cháfer, M.; Chiralt, A.; Martínez, C.G. Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food Eng. 2015, 167, 59–64. [Google Scholar] [CrossRef]
- Sahin, A. The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells. Electrochim. Acta 2018, 271, 127–136. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.J.; Mao, S.; Rohani, S.; Ching, C.; Lu, J. Zwitterionic chitosan–silica–PVA hybrid ultrafiltration membranes for protein separation. Sep. Purif. Technol. 2015, 152, 55–63. [Google Scholar] [CrossRef]
- Priya, V.; Vikas, P. Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Mat. Sci. Eng. C Mater. 2016, 67, 304–312. [Google Scholar] [CrossRef]
- Yahyaei, H.; Shahab, S.; Sheikhi, M.; Filippovich, L.; Almodarresiyeh, H.A.; Kumar, R.; Dikusar, E.; Borzehandaani, M.Y.; Alnajjar, R. Anisotropy (optical, electrical and thermal conductivity) in thin polarizing films for UV/Vis regions of spectrum: Experimental and theoretical investigations. Spectrochim. Acta A 2018, 192, 343–360. [Google Scholar] [CrossRef]
- Lan, W.; Zhang, R.; Ahmed, S.; Qin, W.; Liu, Y. Effects of various antimicrobial polyvinyl alcohol/tea polyphenol composite films on the shelf life of packaged strawberries. LWT 2019, 113, 108297. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Qin, W.; Dai, J.; Zhang, Q.; Lee, K.; Liu, Y. Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Mater. Des. 2020, 185, 108277. [Google Scholar] [CrossRef]
- Li, C.; Lou, T.; Yan, X.; Long, Y.Z.; Cui, G.; Wang, X. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. Int. J. Biol. Macromol. 2018, 106, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Laha, A.; Sharma, C.S.; Majumdar, S. Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh. Mater. Sci. Eng. C 2017, 76, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Hee, K.D.; Wook, K.H. Advanced electrospinning using circle electrodes for freestanding PVDF nanofiber film fabrication. Appl. Surf. Sci. 2018, 455, 251–257. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Fabrication and testing of PVA/Chitosan bilayer films for strawberry packaging. Coatings 2017, 7, 109. [Google Scholar] [CrossRef]
- Ye, Q.; Han, Y.; Zhang, J.; Zhang, W.; Xia, C.; Li, J. Bio-based films with improved water resistance derived from soy protein isolate and stearic acid via bioconjugation. J. Clean. Prod. 2019, 214, 125–131. [Google Scholar] [CrossRef]
- ASTM D638 Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM Standard 882 Standard Test Method for Tensile Properties of Thin Plastic Sheeting; ASTM International: West Conshohocken, PA, USA, 2014.
- Jahed, E.; Khaledabad, M.A.; Bari, M.R.; Almasi, H. Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare, ssp. gracile, essential oil-loaded chitosan films. React. Funct. Polym. 2017, 117, 70–80. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Li, Y.; Yang, Y.; Ju, X.; He, R. The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chem. 2019, 272, 694–701. [Google Scholar] [CrossRef]
- Abdalrazeq, M.; Giosafatto, C.V.L.; Esposito, M.; Fenderico, M.; Di Pierro, P.; Porta, R. Glycerol-plasticized films obtained from whey proteins denatured at alkaline pH. Coatings 2019, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation. Int. J. Biol. Macromol. 2019, 121, 1329–1336. [Google Scholar] [CrossRef]
- Lei, Y.L.; Wu, H.J.; Jiao, C. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocoll. 2019, 94, 128–135. [Google Scholar] [CrossRef]
- Liu, Y.W.; Wang, S.Y.; Lan, W.J. Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int. J. Biol. Macromol. 2018, 107, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, B.; Chu, J.; Zhang, P. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr. Polym. 2017, 184, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Ningaraju, S.; Prakash, A.P.G.; Ravikumar, H.B. Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites. Solid State Ion. 2018, 320, 132–147. [Google Scholar] [CrossRef]
- Biao, Y.; Yuxuan, C.; Qi, T.; Ziqi, Y.; Yourong, Z.; McClements, D.J.; Chongjiang, C. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels. Food Hydrocoll. 2019, 97, 105–197. [Google Scholar] [CrossRef]
- Chowdhury, S.C.; Gillespie, J.W. A molecular dynamics study of the effects of hydrogen bonds on mechanical properties of Kevlar® crystal. Comp. Mater. Sci. 2018, 148, 286–300. [Google Scholar] [CrossRef]
- Gu, H.; Chen, X.; Zhou, X.; Parsaee, Z. Ultrasound-assisted biosynthesis of CuO-NPs using Brown alga cystoseira trinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason. Sonochem. 2018, 41, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Avena-Bustillos, R.J.; Chiou, B.S.; Li, Y.; Ma, Y.; Williams, T.G.; Wood, D.F.; McHugh, T.H.; Zhong, F. Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants. Food Hydrocoll. 2017, 62, 212–221. [Google Scholar] [CrossRef]
- Moydeen, A.M.; Padusha, M.S.A.; Aboelfetoh, E.F.; Al-Deyab, S.S.; El-Newehy, M.H. Fabrication of electrospun poly (vinyl alcohol)/Dextran nanofibers via emulsion process as drug delivery system: Kinetics and in vitro release study. Int. J. Biol. Macromol. 2018, 116, 1250–1259. [Google Scholar] [CrossRef]
- Kakaei, S.; Shahbazi, Y. Effect of chitosan-gelatin film incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides, essential oil on survival of Listeria monocytogenes, and chemical, microbial and sensory properties of minced trout fillet. LWT-Food Sci. Technol. 2016, 72, 432–438. [Google Scholar] [CrossRef]
- Xie, M.; Wang, J.; Zhao, H. A PVA film for detecting lipid oxidation intended for food application. Sensor. Actuat. B-Chem. 2018, 273, 260–263. [Google Scholar] [CrossRef]
- Dou, L.; Li, B.; Zhang, K.; Chu, X.; Hou, H. Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenol. Int. J. Biol. Macromol. 2018, 118, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Bora, A.F.M.; Ma, S.; Li, X.; Liu, L. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Res. Int. 2018, 105, 241–249. [Google Scholar] [CrossRef] [PubMed]
- An, B.J.; Kwak, J.H.; Son, J.H.; Park, J.M.; Lee, J.Y.; Jo, C.; Byun, M.W. Biological and anti-microbial activity of irradiated green tea polyphenols. Food Chem. 2004, 88, 549–555. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Water Absorption (g/g) | Water Dissolution (%) |
---|---|---|
PVA | -- | 100 ± 0 a |
PVA/TP-9:1 | -- | 100 ± 0 a |
PVA/TP-8:2 | -- | 100 ± 0 a |
PVA/TP-7:3 | -- | 100 ± 0 a |
PVA/HT | - | 100 ± 0 a |
PVA/TP/HT-9:1 | 3.40 ± 0.12 a | 10.60 ± 0.07 b |
PVA/TP/HT-8:2 | 2.40 ± 0.15 b | 3.93 ± 0.10 c |
PVA/TP/HT-7:3 | 1.87 ± 0.09 c | 0 ± 0.06 d |
Film | L* | a* | b* | ΔE | Opacity (A600/mm) |
---|---|---|---|---|---|
PVA | 96.37 ± 0.25 a | 3.59 ± 0.05 a | −2.87 ± 0.10 g | 6.80 ± 0.27 f | 65.22 ± 4.31A |
PVA/HT | 95.90 ± 0.73 a | 3.97 ± 0.86 a | 1.46 ± 0.46 f | 9.01 ± 0.66 d | 57.61 ± 4.08 B |
PVA/TP-9:1 | 90.58 ± 0.19 b | 0.44 ± 0.11 c | 1.79 ± 0.09 f | 7.57 ± 0.08 ef | 48.37 ± 3.68 C |
PVA/TP/HT-9:1 | 78.61 ± 0.82 b | 5.24 ± 0.25 a | 14.03 ± 0.96 c | 22.61 ± 1.26 c | 40.45 ± 3.17 D |
PVA/TP-8:2 | 90.72 ± 0.04 b | 0.86 ± 0.09 bc | 2.76 ± 0.11e | 8.38 ± 0.12 de | 34.59 ± 2.91 E |
PVA/TP/HT-8:2 | 76.69 ± 1.25 c | 5.57 ± 0.22 a | 17.92 ± 0.40 b | 26.96 ± 0.24 b | 28.14 ± 2.52 F |
PVA/TP-7:3 | 90.65 ± 0.47 b | 1.30 ± 0.33 b | 3.50 ± 0.66 d | 9.01 ± 0.62 d | 22.78 ± 2.11 G |
PVA/TP/HT-7:3 | 76.36 ± 0.86 d | 6.58 ± 0.30 a | 20.76 ± 0.16 a | 29.70 ± 0.48 a | 18.47 ± 2.02 H |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Zuo, D.; Deng, Z.; Ji, A.; Xia, G. Effects of Heat Treatment and Tea Polyphenols on the Structure and Properties of Polyvinyl Alcohol Nanofiber Films for Food Packaging. Coatings 2020, 10, 49. https://doi.org/10.3390/coatings10010049
Luo J, Zuo D, Deng Z, Ji A, Xia G. Effects of Heat Treatment and Tea Polyphenols on the Structure and Properties of Polyvinyl Alcohol Nanofiber Films for Food Packaging. Coatings. 2020; 10(1):49. https://doi.org/10.3390/coatings10010049
Chicago/Turabian StyleLuo, Jinjie, Duquan Zuo, Zhenghua Deng, Anping Ji, and Guofeng Xia. 2020. "Effects of Heat Treatment and Tea Polyphenols on the Structure and Properties of Polyvinyl Alcohol Nanofiber Films for Food Packaging" Coatings 10, no. 1: 49. https://doi.org/10.3390/coatings10010049
APA StyleLuo, J., Zuo, D., Deng, Z., Ji, A., & Xia, G. (2020). Effects of Heat Treatment and Tea Polyphenols on the Structure and Properties of Polyvinyl Alcohol Nanofiber Films for Food Packaging. Coatings, 10(1), 49. https://doi.org/10.3390/coatings10010049