Antimicrobial Activity of Five Apitoxins from Apis mellifera on Two Common Foodborne Pathogens
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Apitoxin Collection
4.2. Mellitin Determination of Apitoxin by HPLC-UV
4.3. Salmonella and L. monocytogenes Strains
4.4. Determination of Minium Inhibitory and Biocidal Concentrations
4.5. Stastitical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Durand, G.A.; Raoult, D.; Dubourg, G. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. Agents 2019, 53, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Flemming, A. Penicillin, Nobel Lecturer; The Nobel Foundation: Stockholm, Sweden, 1945; pp. 1–11. [Google Scholar]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [Green Version]
- European Commission. A European One Health Action Plan against Antimicrobial Resistance; European Commission: Brussels, Belgium, 2017; pp. 1–24. [Google Scholar]
- Hudson, J.A.; Frewer, L.J.; Jones, G.; Brereton, P.A.; Whittingham, M.J.; Stewart, G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci. Technol. 2017, 69, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef]
- Palmieri, G.; Balestrieri, M.; Proroga, Y.T.R.; Falcigno, L.; Facchiano, A.; Riccio, A.; Capuano, F.; Marrone, R.; Neglia, G.; Anastasio, A. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence. Food Chem. 2016, 211, 546–554. [Google Scholar] [CrossRef]
- Palmieri, G.; Balestrieri, M.; Capuano, F.; Proroga, Y.T.R.; Pomilio, F.; Centorame, P.; Riccio, A.; Marrone, R.; Anastasio, A. Bactericidal and antibiofilm activity of bactenecin-derivative peptides against the food-pathogen Listeria monocytogenes: New perspectives for food processing industry. Int. J. Food Microbiol. 2018, 279, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Laverty, G.; Gorman, S.P.; Gilmore, B.F. The potential of antimicrobial peptides as biocides. Int. J. Mol. Sci. 2011, 12, 6566–6596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colagiorgi, A.; Festa, R.; Di Ciccio, P.A.; Gogliettino, M.; Balestrieri, M.; Palmieri, G.; Anastasio, A.; Ianieri, A. Rapid biofilm eradication of the antimicrobial peptide 1018-K6 against Staphylococcus aureus: A new potential tool to fight bacterial biofilms. Food Control 2020, 107, 106815. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Xia, X.; Zhu, C.; Qin, W.; Xu, Y.; Hang, B.; Sun, Y.; Chen, S.; Zhang, H.; et al. Antimicrobial Peptide JH-3 Effectively Kills Salmonella enterica Serovar Typhimurium Strain CVCC541 and Reduces Its Pathogenicity in Mice. Probiotics Antimicrob. Proteins 2019, 11, 1379–1390. [Google Scholar] [CrossRef]
- Marques Pereira, A.F.; Albano, M.; Bérgamo Alves, F.C.; Murbach Teles Andrade, B.F.; Furlanetto, A.; Mores Rall, V.L.; Delazari dos Santos, L.; de Oliveira Orsi, R.; Fernandes Júnior, A. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains. Microb. Pathog. 2020, 141, 104011. [Google Scholar] [CrossRef]
- Memariani, H.; Memariani, M.; Moravvej, H.; Shahidi-Dadras, M. Melittin: A venom-derived peptide with promising anti-viral properties. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Memariani, H.; Memariani, M.; Shahidi-Dadras, M.; Nasiri, S.; Akhavan, M.M.; Moravvej, H. Melittin: From honeybees to superbugs. Appl. Microbiol. Biotechnol. 2019, 103, 3265–3276. [Google Scholar] [CrossRef]
- Pascoal, A.; Estevinho, M.M.; Choupina, A.B.; Sousa-Pimenta, M.; Estevinho, L.M. An overview of the bioactive compounds, therapeutic properties and toxic effects of apitoxin. Food Chem. Toxicol. 2019, 134, 110864. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, R.; Frangieh, J.; Rima, M.; Obeid, D.E.; Sabatier, J.-M.; Fajloun, Z. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [Green Version]
- Koumanov, K.; Momchilova, A.; Wolf, C. Bimodal regulatory effect of melittin and phospholipase A 2-activating protein on human type II secretory phospholipase A 2. Cell Biol. Int. 2003, 27, 871–877. [Google Scholar] [CrossRef]
- Leandro, L.F.; Mendes, C.A.; Casemiro, L.A.; Vinholis, A.H.C.; Cunha, W.R.; De Almeida, R.; Martins, C.H.G. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. Anais Acad. Bras. Cienc. 2015, 87, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- El-Aziz, T.M.A.; Soares, A.G.; Stockand, J.D. Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins 2019, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.P.; Pereira, G.R.; Barros, E.; Ramos, H.J.O.; Oliveira, L.L.; Serrão, J.E. Antibacterial activity of the venom of the Ponerine and Pachycondyla striata (Formicidae: Ponerinae). Int. J. Trop Insect. Sci. 2020, 40, 393–402. [Google Scholar] [CrossRef]
- Arteaga, V.; Lamas, A.; Regal, P.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Antimicrobial activity of apitoxin from Apis mellifera in Salmonella enterica strains isolated from poultry and its effects on motility, biofilm formation and gene expression. Microb. Pathog. 2019, 137, 103771. [Google Scholar] [CrossRef]
- Picoli, T.; Peter, C.M.; Zani, J.L.; Waller, S.B.; Lopes, M.G.; Boesche, K.N.; Vargas, G.D.; Hübner, S.D.O.; Fischer, G. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb. Pathog. 2017, 112, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Lamas, A.; Miranda, J.M.; Regal, P.; Vázquez, B.; Franco, C.M.; Cepeda, A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol. Res. 2018, 206, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Guatemal Sánchez, A.; Jáuregui Sierra, D.; Arteaga Cadena, V.; Aguirre, S.M.A. Determinación de las condiciones óptimas de un equipo extractor de apitoxina en abejas (Apis mellifera). Rev. Electron. Vet. 2017, 18, 1–11. [Google Scholar]
- Rybak-Chmielewska, H.; Szczêsna, T. HPLC study of chemical composition of honeybee (Apis mellifera L.) venom. J. Apic. Sci. 2004, 48, 103–109. [Google Scholar]
- International Standarization Organization. Microbiology of the food chain—Horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1: Detection of Salmonella spp. (ISO 6579–1:2017); International Standarization Organization: Geneva, Switzerland, 2017. [Google Scholar]
- International Organization for Standardization ISO 11290–1:2017. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 1: Detection Method; International Standarization Organization: Geneva, Switzerland, 2017; pp. 1–36. [Google Scholar]
MIC (µg/mL) | |||||||
---|---|---|---|---|---|---|---|
Strain | Source | Code | Apitoxin 1 | Apitoxin 2 | Apitoxin 3 | Apitoxin 4 | Apitoxin 5 |
S. Anatum | PF | A1 | 512 | 256 | 256 | 512 | 512 |
S. Anatum | PF | A6 | 512 | 512 | 512 | 512 | 512 |
S. Anatum | PF | A15 | 512 | 512 | 512 | 512 | 512 |
S. enterica subspecies arizonae | PF | AZ1 | 512 | 256 | 256 | 512 | 512 |
S. enterica subspecies arizonae | PF | AZ6 | 512 | 256 | 256 | 512 | 256 |
S. enterica subspecies arizonae | PF | AZ12 | 256 | 256 | 256 | 512 | 512 |
S. enterica subspecies arizonae | PF | AZ16 | 1024 | 512 | 512 | 512 | 512 |
S. enterica subspecies arizonae | PF | AZ20 | 512 | 256 | 512 | 512 | 512 |
S. enterica subspecies arizonae | PF | AZ21 | 512 | 512 | 256 | 256 | 256 |
S. Bardo | PF | B2 | 512 | 512 | 512 | 512 | 512 |
S. Bardo | PF | B3 | 512 | 512 | 512 | 512 | 512 |
S. Bredeney | PF | BR1 | 1024 | 512 | 512 | 512 | 512 |
S. Dabou | PF | DA1 | 512 | 512 | 512 | 512 | 256 |
S. Drac | PF | DC4 | 1024 | 512 | 512 | 512 | 512 |
S. Enteritidis | CK | ET1 | 512 | 512 | 256 | 256 | 256 |
S. Enteritidis | PF | ET2 | 512 | 512 | 256 | 256 | 512 |
S. Infantis | PF | I1 | 256 | 256 | 256 | 512 | 256 |
S. Infantis | PF | I2 | 256 | 256 | 256 | 512 | 256 |
S. Infantis | PF | I3 | 256 | 256 | 256 | 512 | 256 |
S. Infantis | PF | I4 | 256 | 256 | 256 | 1024 | 256 |
S. Infantis | PF | I7 | 512 | 512 | 512 | 256 | 256 |
S. Infantis | PF | I12 | 512 | 512 | 512 | 512 | 512 |
S. Infantis | PF | I11 | 512 | 512 | 512 | 512 | 512 |
S. Infantis | PF | I18 | 512 | 512 | 512 | 256 | 512 |
S. Isangi | PF | IG1 | 512 | 512 | 512 | 512 | 512 |
S. Isangi | PF | IG9 | 512 | 512 | 512 | 512 | 512 |
S. Montevideo | PF | M1 | 512 | 512 | 512 | 512 | 512 |
S. Mbandaka | PF | MB1 | 512 | 512 | 512 | 512 | 256 |
S. Ndolo | PF | ND1 | 512 | 512 | 512 | 512 | 512 |
S. Ndolo | PF | ND2 | 512 | 512 | 512 | 512 | 512 |
S. Ndolo | PF | ND5 | 512 | 512 | 512 | 256 | 256 |
S. Newport | PF | N1 | 512 | 512 | 512 | 512 | 512 |
S. Newport | PF | N6 | 512 | 512 | 512 | 512 | 512 |
S. Rissen | PF | R1 | 512 | 512 | 512 | 512 | 256 |
S. enterica subspecies salamae | PF | SA1 | 512 | 512 | 512 | 1024 | 512 |
S. enterica subspecies salamae | PF | SA2 | 1024 | 512 | 512 | 1024 | 512 |
S. enterica subspecies salamae | PF | SA3 | 1024 | 1024 | 1024 | 1024 | 1024 |
S. Seftenberg | PF | S1 | 512 | 512 | 512 | 512 | 512 |
S. Stanleyville | PF | ST1 | 512 | 512 | 512 | 512 | 512 |
S. Thompson | PF | TM1 | 1024 | 512 | 512 | 512 | 512 |
S. Typhimurium | CK | T2 | 512 | 256 | 512 | 512 | 256 |
S. Typhimurium | CK | T3 | 512 | 512 | 256 | 512 | 512 |
S. Typhimurium | PF | T6 | 512 | 512 | 512 | 512 | 512 |
S. Typhimurium | PF | T10 | 512 | 512 | 256 | 512 | 256 |
S. Typhimurium | PF | T12 | 512 | 512 | 512 | 512 | 256 |
S. Typhimurium | PF | T13 | 512 | 256 | 256 | 512 | 256 |
S. Typhimurium | PF | T18 | 512 | 512 | 512 | 512 | 512 |
S. Typhimurium | PF | T21 | 256 | 512 | 256 | 256 | 256 |
S. Typhimurium | PF | T24 | 512 | 512 | 512 | 512 | 512 |
S. Typhimurium | CC | CECT 4395 | 512 | 512 | 512 | 512 | 512 |
n (%) | n (%) | n (%) | n (%) | n (%) | |||
MIC (µg/mL) | 256 | 6 (12%) | 11 (22%) | 15 (30%) | 7 (14%) | 17 (34%) | |
512 | 38 (76%) | 38 (76%) | 34 (68%) | 39 (78%) | 33 (64%) | ||
1024 | 6 (12%) | 1 (2%) | 1 (2%) | 4 (8%) | 1 (2%) |
MIC (µg/mL) | |||||||
---|---|---|---|---|---|---|---|
Strain | Source | Code | Apitoxin 1 | Apitoxin 2 | Apitoxin 3 | Apitoxin 4 | Apitoxin 5 |
L. monocytogenes | RM | LHICA 1 | 16 | 16 | 32 | 16 | 32 |
L. monocytogenes | RM | LHICA 2 | 16 | 16 | 32 | 16 | 32 |
L. monocytogenes | CH | LHICA 3 | 32 | 16 | 32 | 32 | 32 |
L. monocytogenes | CH | LHICA 4 | 32 | 32 | 16 | 32 | 32 |
L. monocytogenes | CH | LHICA 5 | 16 | 16 | 32 | 32 | 32 |
L. monocytogenes | FP | LHICA 6 | 16 | 16 | 16 | 32 | 32 |
L. monocytogenes | FP | LHICA 7 | 32 | 32 | 32 | 16 | 32 |
L. monocytogenes | CC | CECT 934 | 32 | 16 | 32 | 16 | 32 |
n (%) | n (%) | n (%) | n (%) | n (%) | |||
MIC (µg/mL) | 16 | 4 | 6 | 2 | 4 | 0 | |
32 | 4 | 2 | 6 | 4 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamas, A.; Arteaga, V.; Regal, P.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Antimicrobial Activity of Five Apitoxins from Apis mellifera on Two Common Foodborne Pathogens. Antibiotics 2020, 9, 367. https://doi.org/10.3390/antibiotics9070367
Lamas A, Arteaga V, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Antimicrobial Activity of Five Apitoxins from Apis mellifera on Two Common Foodborne Pathogens. Antibiotics. 2020; 9(7):367. https://doi.org/10.3390/antibiotics9070367
Chicago/Turabian StyleLamas, Alexandre, Vicente Arteaga, Patricia Regal, Beatriz Vázquez, José Manuel Miranda, Alberto Cepeda, and Carlos Manuel Franco. 2020. "Antimicrobial Activity of Five Apitoxins from Apis mellifera on Two Common Foodborne Pathogens" Antibiotics 9, no. 7: 367. https://doi.org/10.3390/antibiotics9070367
APA StyleLamas, A., Arteaga, V., Regal, P., Vázquez, B., Miranda, J. M., Cepeda, A., & Franco, C. M. (2020). Antimicrobial Activity of Five Apitoxins from Apis mellifera on Two Common Foodborne Pathogens. Antibiotics, 9(7), 367. https://doi.org/10.3390/antibiotics9070367