Next Article in Journal
New Insights into Bioactive Compounds from the Medicinal Plant Spathodea campanulata P. Beauv. and Their Activity against Helicobacter pylori
Next Article in Special Issue
FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens
Previous Article in Journal
One-Step Differential Detection of OXA-48-Like Variants Using High-Resolution Melting (HRM) Analysis
Previous Article in Special Issue
Antimicrobial Resistance Profiles of Adherent Invasive Escherichia coli Show Increased Resistance to β-Lactams
Open AccessArticle

Activity of Bacteriophage and Complex Tannins against Biofilm-Forming Shiga Toxin-Producing Escherichia coli from Canada and South Africa

1
Department of Microbiology, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
2
Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
3
Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada
4
Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
*
Authors to whom correspondence should be addressed.
Antibiotics 2020, 9(5), 257; https://doi.org/10.3390/antibiotics9050257
Received: 18 April 2020 / Revised: 12 May 2020 / Accepted: 13 May 2020 / Published: 15 May 2020
(This article belongs to the Special Issue Pathogenic Escherichia coli: Infections and Therapies)
Bacteriophages, natural killers of bacteria, and plant secondary metabolites, such as condensed tannins, are potential agents for the control of foodborne pathogens. The first objective of this study evaluated the efficacy of a bacteriophage SA21RB in reducing pre-formed biofilms on stainless-steel produced by two Shiga toxin-producing Escherichia coli (STEC) strains, one from South Africa and the other from Canada. The second objective examined the anti-bacterial and anti-biofilm activity of condensed tannin (CT) from purple prairie clover and phlorotannins (PT) from brown seaweed against these strains. For 24-h-old biofilms, (O113:H21; 6.2 log10 colony-forming units per square centimeter (CFU/cm2) and O154:H10; 5.4 log10 CFU/cm2), 3 h of exposure to phage (1013 plaque-forming units per milliliter (PFU/mL)) reduced (p ≤ 0.05) the number of viable cells attached to stainless-steel coupons by 2.5 and 2.1 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. However, as biofilms matured, the ability of phage to control biofilm formation declined. In biofilms formed for 72 h (O113:H21; 5.4 log10 CFU/cm2 and O154:H10; 7 log10 CFU/cm2), reductions after the same duration of phage treatment were only 0.9 and 1.3 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. Initial screening of CT and PT for anti-bacterial activity by a microplate assay indicated that both STEC strains were less sensitive (p ≤ 0.05) to CT than PT over a concentration range of 25–400 µg/mL. Based on the lower activity of CT (25–400 µg/mL), they were not further examined. Accordingly, PT (50 µg/mL) inhibited (p ≤ 0.05) biofilm formation for up to 24 h of incubation at 22 °C, but this inhibition progressively declined over 72 h for both O154:H10 and O113:H21. Scanning electron microscopy revealed that both SA21RB and PT eliminated 24 h biofilms, but that both strains were able to adhere and form biofilms on stainless-steel coupons at longer incubation times. These findings revealed that phage SA21RB is more effective at disrupting 24 than 72 h biofilms and that PT were able to inhibit biofilm formation of both E. coli O154:H10 and O113:H21 for up to 24 h. View Full-Text
Keywords: biofilms; bacteriophage; condensed tannin; phlorotannins; Shiga toxin-producing Escherichia coli; stainless-steel coupon biofilms; bacteriophage; condensed tannin; phlorotannins; Shiga toxin-producing Escherichia coli; stainless-steel coupon
Show Figures

Figure 1

MDPI and ACS Style

Bumunang, E.W.; Ateba, C.N.; Stanford, K.; Niu, Y.D.; Wang, Y.; McAllister, T.A. Activity of Bacteriophage and Complex Tannins against Biofilm-Forming Shiga Toxin-Producing Escherichia coli from Canada and South Africa. Antibiotics 2020, 9, 257. https://doi.org/10.3390/antibiotics9050257

AMA Style

Bumunang EW, Ateba CN, Stanford K, Niu YD, Wang Y, McAllister TA. Activity of Bacteriophage and Complex Tannins against Biofilm-Forming Shiga Toxin-Producing Escherichia coli from Canada and South Africa. Antibiotics. 2020; 9(5):257. https://doi.org/10.3390/antibiotics9050257

Chicago/Turabian Style

Bumunang, Emmanuel W.; Ateba, Collins N.; Stanford, Kim; Niu, Yan D.; Wang, Y.; McAllister, Tim A. 2020. "Activity of Bacteriophage and Complex Tannins against Biofilm-Forming Shiga Toxin-Producing Escherichia coli from Canada and South Africa" Antibiotics 9, no. 5: 257. https://doi.org/10.3390/antibiotics9050257

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop