Antibiotics: A Bibliometric Analysis of Top 100 Classics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Bibliometric Parameters
2.4. Methodological Design
2.5. Institution and Country of Origin
2.6. Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Bibliometric Parameters
3.2. Year of Publication
3.3. Methodological Design and Evidence Level (EL)
3.4. Contributing Authors, Institutions, and Countries
3.5. Journal of Publication
3.6. Keywords
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, P.; Dummer, P.; Noorani, T.; Asif, J. The top 50 most-cited articles published in the International Endodontic Journal. Int. Endod. J. 2019, 52, 803–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam-Pervez, N.; Lubek, J.E. Most cited publications in oral and maxillofacial surgery: A bibliometric analysis. Oral Maxillofac. Surg. 2018, 22, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Feijoo, J.F.; Limeres, J.; Fernández-Varela, M.; Ramos, I.; Diz, P. The 100 most cited articles in dentistry. Clin. Oral Investig. 2014, 18, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Gondivkar, S.M.; Sarode, S.C.; Gadbail, A.R.; Gondivkar, R.S.; Chole, R.; Sarode, G.S. Bibliometric analysis of 100 most cited articles on oral submucous fibrosis. J. Oral Pathol. Med. 2018, 47, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.; Belmont, J.; Cho, C.T. Journal impact factor in the era of expanding literature. J. Microbiol. Immunol. Infect. 2006, 39, 436–443. [Google Scholar]
- Heldwein, F.L.; Rhoden, E.L.; Morgentaler, A. Classics of urology: A half century history of the most frequently cited articles (1955–2009). Urology 2010, 75, 1261–1268. [Google Scholar] [CrossRef]
- Fardi, A.; Kodonas, K.; Gogos, C.; Economides, N. Top-cited articles in endodontic journals. J. Endod. 2011, 37, 1183–1190. [Google Scholar] [CrossRef]
- Corbella, S.; Francetti, L.; Taschieri, S.; Weinstein, R.; Del Fabbro, M. Analysis of the 100 most-cited articles in periodontology. J. Investig. Clin. Dent. 2017, 8, e12222. [Google Scholar] [CrossRef]
- Kolahi, J.; Khazaei, S. Altmetric: Top 50 dental articles in 2014. Br. Dent. J. 2016, 220, 569–574. [Google Scholar] [CrossRef]
- Van Noorden, R.; Maher, B.; Nuzzo, R. The top 100 papers. Nature 2014, 514, 550–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarazona, B.; Lucas-Dominguez, R.; Paredes-Gallardo, V.; Alonso-Arroyo, A.; Vidal-Infer, A. The 100 most-cited articles in orthodontics: A bibliometric study. Angle Orthod. 2018, 88, 785–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Tiwana, H.; Durrani, M.; Tiwana, S.; Gong, B.; Hafeez, K.; Khosa, F. Hallmark of success: Top 50 classics in oral and maxillofacial cone-beam computed tomography. Pol. J. Radiol. 2018, 83, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, W.; Acevedo, J.N.; Khan, M.S.; Santiago, L.J.; Gaeta, T.J. The top 100 cited articles published in emergency medicine journals. Am. J. Emerg. Med. 2015, 33, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Coats, A.J. Top of the charts: Download versus citations in the International Journal of Cardiology. Int. J. Cardiol. 2005, 105, 123–125. [Google Scholar] [CrossRef]
- Tam, W.W.; Wong, E.L.; Wong, F.C.; Hui, D.S. Citation classics: Top 50 cited articles in ‘respiratory system’. Respirology 2013, 18, 71–81. [Google Scholar] [CrossRef]
- Baltussen, A.; Kindler, C.H. Citation classics in anesthetic journals. Anesth. Analg. 2004, 98, 443–451. [Google Scholar] [CrossRef]
- Ponce, F.A.; Lozano, A.M. Highly cited works in neurosurgery. Part I: The 100 top-cited papers in neurosurgical journals: A review. J. Neurosurg. 2010, 112, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Arshad, A.I.; Ahmad, P.; Dummer, P.M.; Alam, M.K.; Asif, J.A.; Mahmood, Z.; Abd Rahman, N.; Mamat, N. Citation Classics on Dental Caries: A Systematic Review. Eur. J. Dent. 2020, 14, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, P.; Asif, J.A.; Alam, M.K.; Slots, J. A bibliometric analysis of Periodontology 2000. Periodontol. 2000 2020, 82, 286–297. [Google Scholar] [CrossRef]
- Ahmad, P.; Vincent Abbott, P.; Khursheed Alam, M.; Ahmed Asif, J. A bibliometric analysis of the top 50 most cited articles published in the Dental Traumatology. Dent. Traumatol. 2020, 36, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Southern, P.J.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1982, 1, 327–341. [Google Scholar] [PubMed]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Cohen, S.N.; Chang, A.C.; Hsu, L. Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 1972, 69, 2110–2114. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Kovach, M.E.; Elzer, P.H.; Hill, D.S.; Robertson, G.T.; Farris, M.A.; Roop, R.M., 2nd; Peterson, K.M. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166, 175–176. [Google Scholar] [CrossRef]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef]
- Mah, T.F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Neu, H.C. The crisis in antibiotic resistance. Science 1992, 257, 1064–1073. [Google Scholar] [CrossRef] [Green Version]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003, 3, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 1987, 84, 5449–5453. [Google Scholar] [CrossRef] [Green Version]
- Kuemmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Dellit, T.H.; Owens, R.C.; McGowan, J.E., Jr.; Gerding, D.N.; Weinstein, R.A.; Burke, J.P.; Huskins, W.C.; Paterson, D.L.; Fishman, N.O.; Carpenter, C.F.; et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, C.F.; Murray, H.W.; Wiebe, M.E.; Rubin, B.Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 1983, 158, 670–689. [Google Scholar] [CrossRef] [Green Version]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Goossens, H.; Ferech, M.; Vander Stichele, R.; Elseviers, M.; Group, E.P. Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet 2005, 365, 579–587. [Google Scholar] [CrossRef]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect. Dis. 2010, 10, 597–602. [Google Scholar] [CrossRef]
- Mast, E.E.; Margolis, H.S.; Fiore, A.E.; Brink, E.W.; Goldstein, S.T.; Wang, S.A.; Moyer, L.A.; Bell, B.P.; Alter, M.J.; Advisory Committee on Immunization, P. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP) part 1: Immunization of infants, children, and adolescents. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 1–31. [Google Scholar]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Anthonisen, N.R.; Manfreda, J.; Warren, C.P.; Hershfield, E.S.; Harding, G.K.; Nelson, N.A. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 1987, 106, 196–204. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point- Prevalence Survey of Health Care- Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [Green Version]
- Niederman, M.S.; Mandell, L.A.; Anzueto, A.; Bass, J.B.; Broughton, W.A.; Campbell, G.D.; Dean, N.; File, T.; Fine, M.J.; Gross, P.A.; et al. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am. J. Respir. Crit. Care Med. 2001, 163, 1730–1754. [Google Scholar] [CrossRef]
- Liang, S.C.; Tan, X.-Y.; Luxenberg, D.P.; Karim, R.; Dunussi-Joannopoulos, K.; Collins, M.; Fouser, L.A. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 2006, 203, 2271–2279. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Gewirtz, D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999, 57, 727–741. [Google Scholar] [CrossRef]
- Steers, E.; Foltz, E.L.; Graves, B.S. An inocula replicating apparatus for routine testing of bacterial susceptibility to antibiotics. Antibiot. Chemother. 1959, 9, 307–311. [Google Scholar]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef]
- Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Levy Hara, G.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Valore, E.V.; Waring, A.J.; Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 2001, 276, 7806–7810. [Google Scholar] [CrossRef] [Green Version]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1999, 1462, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 1995, 13, 61–92. [Google Scholar] [CrossRef]
- Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Dethlefsen, L.; Huse, S.; Sogin, M.L.; Relman, D.A. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol. 2008, 6, 2383–2400. [Google Scholar] [CrossRef]
- Hughes, W.T.; Armstrong, D.; Bodey, G.P.; Bow, E.J.; Brown, A.E.; Calandra, T.; Feld, R.; Pizzo, P.A.; Rolston, K.V.I.; Shenep, J.L.; et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin. Infect. Dis. 2002, 34, 730–751. [Google Scholar] [CrossRef] [Green Version]
- Nathan, C.F.; Hibbs, J.B., Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 1991, 3, 65–70. [Google Scholar] [CrossRef]
- Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602. [Google Scholar] [CrossRef] [PubMed]
- Hidron, A.I.; Edwards, J.R.; Patel, J.; Horan, T.C.; Sievert, D.M.; Pollock, D.A.; Fridkin, S.K.; National Healthcare Safety Network, T.; Participating National Healthcare, S. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 2008, 29, 996–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Ong, P.Y.; Ohtake, T.; Brandt, C.; Strickland, I.; Boguniewicz, M.; Ganz, T.; Gallo, R.L.; Leung, D.Y.M. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 2002, 347, 1151–1160. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; de Lorenzo, V.; Timmis, K.N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 1990, 172, 6557–6567. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.F. The effective period of preventive antibiotic action in experimental incisions and dermal lesions. Surgery 1961, 50, 161–168. [Google Scholar]
- Kollef, M.H.; Sherman, G.; Ward, S.; Fraser, V.J. Inadequate antimicrobial treatment of infections: A risk factor for hospital mortality among critically ill patients. Chest 1999, 115, 462–474. [Google Scholar] [CrossRef]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.-A.H.; Wingard, J.R. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 52, E56–E93. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, E.H.; Sherman, G.; Ward, S.; Fraser, V.J.; Kollef, M.H. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000, 118, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Pigeon, C.; Ilyin, G.; Courselaud, B.; Leroyer, P.; Turlin, B.; Brissot, P.; Loreal, O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 2001, 276, 7811–7819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.V.; Brodie, J.L.; Benner, E.J.; Kirby, W.M. Simplified, accurate method for antibiotic assay of clinical specimens. Appl. Microbiol. 1966, 14, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Chambers, H.F.; DeLeo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Davies, J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994, 264, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Cherepanov, P.P.; Wackernagel, W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995, 158, 9–14. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Hasan, T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photoch. Photobio. Sci. 2004, 3, 436–450. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000, 407, 340–348. [Google Scholar] [CrossRef]
- Ganz, T.; Selsted, M.E.; Szklarek, D.; Harwig, S.S.; Daher, K.; Bainton, D.F.; Lehrer, R.I. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Investig. 1985, 76, 1427–1435. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Classen, D.C.; Evans, R.S.; Pestotnik, S.L.; Horn, S.D.; Menlove, R.L.; Burke, J.P. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N. Engl. J. Med. 1992, 326, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacol. Ther. 2015, 40, 277–283. [Google Scholar]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Bolger, A.F.; Levison, M.E.; Ferrieri, P.; Gerber, M.A.; Tani, L.Y.; Gewitz, M.H.; et al. Infective endocarditis: Diagnosis, antimicrobial therapy, and management of complications: A statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: Endorsed by the Infectious Diseases Society of America. Circulation 2005, 111, e394–e434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, J.G.; Chang, T.W.; Gurwith, M.; Gorbach, S.L.; Onderdonk, A.B. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N. Engl. J. Med. 1978, 298, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Lande, R.; Gregorio, J.; Facchinetti, V.; Chatterjee, B.; Wang, Y.-H.; Homey, B.; Cao, W.; Wang, Y.-H.; Su, B.; Nestle, F.O.; et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007, 449, 564–566. [Google Scholar] [CrossRef]
- Harder, J.; Bartels, J.; Christophers, E.; Schroder, J.M. A peptide antibiotic from human skin. Nature 1997, 387, 861. [Google Scholar] [CrossRef]
- Hancock, R.E.; Lehrer, R. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 1998, 16, 82–88. [Google Scholar] [CrossRef]
- Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002, 66, 236–248. [Google Scholar] [CrossRef]
- Rothstein, J.D.; Patel, S.; Regan, M.R.; Haenggeli, C.; Huang, Y.H.; Bergles, D.E.; Jin, L.; Dykes Hoberg, M.; Vidensky, S.; Chung, D.S.; et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005, 433, 73–77. [Google Scholar] [CrossRef]
- Steiner, H.; Hultmark, D.; Engstrom, A.; Bennich, H.; Boman, H.G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981, 292, 246–248. [Google Scholar] [CrossRef]
- Ruparelia, J.P.; Chatteriee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 2011, 108, 4554–4561. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, M.A.; Walsh, C.T. Antibiotics for Emerging Pathogens. Science 2009, 325, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Vezina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 1975, 28, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.; Chapple, D.S. Peptide antibiotics. Antimicrob. Agents Chemother. 1999, 43, 1317–1323. [Google Scholar] [CrossRef] [Green Version]
- Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef]
- Harder, J.; Bartels, J.; Christophers, E.; Schroder, J.M. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 2001, 276, 5707–5713. [Google Scholar] [CrossRef] [Green Version]
- Epand, R.M.; Vogel, H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1999, 1462, 11–28. [Google Scholar] [CrossRef] [Green Version]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schaeberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef]
- Cohen, M.L. Epidemiology of drug resistance: Implications for a post-antimicrobial era. Science 1992, 257, 1050–1055. [Google Scholar] [CrossRef]
- Umezawa, H.; Maeda, K.; Takeuchi, T.; Okami, Y. New antibiotics, bleomycin A and B. J. Antibiot. 1966, 19, 200–209. [Google Scholar] [PubMed]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, E.-R.; Worley, S.D.; Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 2007, 8, 1359–1384. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E. Peptide antibiotics. Lancet 1997, 349, 418–422. [Google Scholar] [CrossRef]
- Moazed, D.; Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987, 327, 389–394. [Google Scholar] [CrossRef]
- Baquero, F.; Martinez, J.-L.; Canton, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J., Jr.; Infectious Diseases Society of America. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 155–164. [Google Scholar] [CrossRef]
- Wang, T.-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004, 173, 2909–2912. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Krause, A.; Neitz, S.; Magert, H.J.; Schulz, A.; Forssmann, W.G.; Schulz-Knappe, P.; Adermann, K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000, 480, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Prezant, T.R.; Agapian, J.V.; Bohlman, M.C.; Bu, X.; Oztas, S.; Qiu, W.Q.; Arnos, K.S.; Cortopassi, G.A.; Jaber, L.; Rotter, J.I. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat. Genet. 1993, 4, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Fardi, A.; Kodonas, K.; Lillis, T.; Veis, A. Top-Cited Articles in Implant Dentistry. Int. J. Oral Maxillofac. Implant. 2017, 32, 555–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-J. A bibliometric analysis of physics publications in Korea, 1994-1998. Scientometrics 2001, 50, 503–521. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Sarraf Shirazi, A.; Andersson, L. The most-cited articles in dental, oral, and maxillofacial traumatology during 64 years. Dent. Traumatol. 2015, 31, 350–360. [Google Scholar] [CrossRef]
- Ugolini, D.; Neri, M.; Cesario, A.; Bonassi, S.; Milazzo, D.; Bennati, L.; Lapenna, L.M.; Pasqualetti, P. Scientific production in cancer rehabilitation grows higher: A bibliometric analysis. Support. Care Cancer 2012, 20, 1629–1638. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D.; CONSORT Group. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, K.; Stein, D.; Jain, S.; Elhadad, N. An analysis of clinical queries in an electronic health record search utility. Int. J. Med. Inform. 2010, 79, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Asghari, S.; Navimipour, N.J. Nature inspired meta-heuristic algorithms for solving the service composition problem in the cloud environments. Int. J. Commun. Syst. 2018, 31, e3708. [Google Scholar] [CrossRef]
R 1 | Author [Reference] | Year | CD 2 | CCI 3 2019 | WoS 4 | ES 5 | GS 6 |
---|---|---|---|---|---|---|---|
1 | Bauer, Kirby, Sherris, and Turck [22] | 1966 | 205 | 621 | 11,051 | 10,740 | 20,041 |
2 | Zasloff [23] | 2002 | 316 | 398 | 5685 | 5668 | 7994 |
3 | Southern and Berg [24] | 1982 | 102 | 3 | 3891 | 2319 | 3875 |
4 | Cowan [25] | 1999 | 179 | 292 | 3749 | 4598 | 11203 |
5 | Sondi and Salopek-Sondi [26] | 2004 | 212 | 353 | 3397 | 3677 | 5471 |
6 | Brogden [27] | 2005 | 224 | 302 | 3363 | 3353 | 4941 |
7 | Kumar et al. [28] | 2006 | 214 | 291 | 2996 | 3185 | 5039 |
8 | Cohen et al. [29] | 1972 | 59 | 17 | 2809 | 1775 | 3754 |
9 | Kim et al. [30] | 2007 | 201 | 311 | 2615 | 2818 | 4164 |
10 | Stewart and Costerton [31] | 2001 | 130 | 217 | 2474 | 2602 | 4113 |
11 | Hancock and Sahl [32] | 2006 | 170 | 139 | 2373 | 2391 | 3185 |
12 | Kovach et al. [33] | 2006 | 167 | 244 | 2337 | 2319 | 3019 |
13 | Liu et al. [34] | 1995 | 93 | 166 | 2332 | 2458 | 3571 |
14 | Dorman and Deans [35] | 2000 | 110 | 177 | 2201 | 2407 | 4479 |
15 | Sharma et al. [36] | 2009 | 188 | 240 | 2071 | 2269 | 3196 |
16 | Mah and O’Toole [37] | 2001 | 108 | 183 | 2043 | 2127 | 3529 |
17 | Neu [38] | 2003 | 116 | 119 | 1970 | 2071 | 3413 |
18 | Chopra and Roberts [39] | 2001 | 104 | 230 | 1967 | 2026 | 3414 |
19 | Davies and Davies [40] | 2009 | 178 | 312 | 1963 | 2037 | 3817 |
20 | Ganz [41] | 2010 | 195 | 395 | 1952 | 1983 | 3115 |
21 | Zasloff [42] | 2006 | 138 | 257 | 1935 | 1805 | 2643 |
22 | Kuemmerer [43] | 1992 | 69 | 82 | 1930 | 2007 | 2734 |
23 | Dellit et al. [44] | 1987 | 58 | 67 | 1915 | 1951 | 1732 |
24 | Wiegand et al. [45] | 2010 | 187 | 146 | 1871 | 1898 | 2848 |
25 | Yeaman and Yount [46] | 2007 | 144 | 146 | 1869 | 1846 | 2702 |
26 | Nathan et al. [47] | 2003 | 108 | 169 | 1842 | 1246 | 2033 |
27 | Cushnie and Lamb [48] | 2008 | 153 | 384 | 1839 | 2052 | 3983 |
28 | Goossens et al. [49] | 2005 | 121 | 230 | 1811 | 1850 | 2904 |
29 | Sarmah et al. [50] | 1983 | 47 | 31 | 1737 | 1817 | 2638 |
30 | Kumarasamy et al. [51] | 2005 | 115 | 149 | 1726 | 1842 | 3071 |
31 | Mast et al. [52] | 2005 | 115 | 70 | 1719 | 645 | 1868 |
32 | Rabea et al. [53] | 2003 | 99 | 171 | 1689 | 1719 | 2523 |
33 | Anthonisen et al. [54] | 2001 | 87 | 38 | 1650 | 1898 | 3065 |
34 | Magill et al. [55] | 1987 | 49 | 57 | 1633 | 1601 | 2294 |
35 | Niederman et al. [56] | 2014 | 260 | 337 | 1562 | 1893 | 2319 |
36 | Liang et al. [57] | 1999 | 74 | 96 | 1552 | 1525 | 2168 |
37 | Zankari et al. [58] | 2001 | 80 | 81 | 1518 | 1489 | 2039 |
38 | Gewirtz [59] | 2006 | 108 | 102 | 1512 | 1550 | 2177 |
39 | Steers et al. [60] | 2006 | 106 | 121 | 1482 | 596 | 1288 |
40 | Hirsch et al. [61] | 1999 | 70 | 82 | 1474 | 1549 | 2469 |
41 | Jenssen et al. [62] | 2012 | 184 | 484 | 1468 | 1462 | 2257 |
42 | Laxminarayan et al. [63] | 1959 | 24 | 1 | 1453 | 1454 | 2387 |
43 | Park et al. [64] | 1995 | 58 | 30 | 1447 | 1511 | 2483 |
44 | Kohanski et al. [65] | 2002 | 79 | 22 | 1421 | 1431 | 2062 |
45 | Shai [66] | 2013 | 201 | 326 | 1410 | 1403 | 1990 |
46 | Boman [67] | 2007 | 108 | 147 | 1405 | 1420 | 2100 |
47 | Hoiby et al. [68] | 1999 | 66 | 65 | 1391 | 1395 | 2249 |
48 | Dethlefsen et al. [69] | 2010 | 137 | 201 | 1372 | 1373 | 1981 |
49 | Hughes et al. [70] | 2008 | 112 | 124 | 1347 | 1641 | 1790 |
50 | Nathan and Hibbs [71] | 1999 | 64 | 99 | 1346 | 1230 | 1789 |
51 | Li et al. [72] | 1991 | 46 | 25 | 1336 | 1399 | 1975 |
52 | Hidron et al. [73] | 2008 | 111 | 72 | 1334 | 1418 | 2028 |
53 | Hammer et al. [74] | 2008 | 110 | 146 | 1323 | 1492 | 3055 |
54 | Ong et al. [75] | 2002 | 71 | 70 | 1286 | 1446 | 2058 |
55 | Herrero et al. [76] | 2011 | 142 | 165 | 1280 | 1205 | 1714 |
56 | Burke [77] | 1999 | 61 | 45 | 1278 | 1007 | 1773 |
57 | Kollef et al. [78] | 2001 | 67 | 45 | 1269 | 1462 | 2254 |
58 | Freifeld et al. [79] | 2000 | 63 | 45 | 1259 | 1493 | 2753 |
59 | Ibrahim et al. [80] | 1990 | 41 | 46 | 1243 | 1405 | 2098 |
60 | Pigeon et al. [81] | 1961 | 21 | 18 | 1234 | 1268 | 1917 |
61 | Bennett et al. [82] | 2009 | 112 | 149 | 1232 | 704 | 1187 |
62 | Chambers and DeLeo [83] | 1994 | 47 | 29 | 1213 | 1209 | 2058 |
63 | Davies [84] | 1966 | 22 | 4 | 1194 | 1294 | 2295 |
64 | Cherepanov and Wackernagel [85] | 2010 | 117 | 184 | 1171 | 1157 | 1708 |
65 | Kong et al. [86] | 1995 | 46 | 79 | 1154 | 1233 | 1741 |
66 | Hamblin and Hasan [87] | 2000 | 58 | 33 | 1153 | 1226 | 1740 |
67 | Carter et al. [88] | 1985 | 33 | 34 | 1152 | 1155 | 1677 |
68 | Ganz et al. [89] | 2004 | 72 | 112 | 1152 | 1024 | 1628 |
69 | Ceri et al. [90] | 1997 | 49 | 17 | 1135 | 1159 | 1716 |
70 | Classen et al. [91] | 2005 | 75 | 46 | 1129 | 1318 | 2194 |
71 | Ventola [92] | 1992 | 40 | 34 | 1128 | 1214 | 2398 |
72 | Baddour et al. [93] | 1999 | 53 | 98 | 1119 | 1198 | 1889 |
73 | Bartlett et al. [94] | 1981 | 28 | 45 | 1110 | 949 | 1625 |
74 | Lande et al. [95] | 1998 | 50 | 35 | 1099 | 1119 | 1597 |
75 | Harder et al. [96] | 2007 | 84 | 84 | 1096 | 1128 | 1716 |
76 | Hancock and Lehrer [97] | 2015 | 218 | 458 | 1091 | 1055 | 1628 |
77 | Shai [98] | 1978 | 26 | 21 | 1080 | 1074 | 1500 |
78 | Rothstein et al. [99] | 2015 | 215 | 413 | 1075 | 1087 | 1402 |
79 | Steiner et al. [100] | 2001 | 56 | 38 | 1072 | 968 | 1615 |
80 | Ruparelia et al. [101] | 2005 | 71 | 58 | 1071 | 1080 | 1518 |
81 | Dethlefsen and Relman [102] | 1975 | 23 | 65 | 1045 | 1045 | 1533 |
82 | Fischbach and Walsh [103] | 1999 | 50 | 51 | 1044 | 1031 | 1603 |
83 | Vezina et al. [104] | 2002 | 58 | 70 | 1041 | 1118 | 1699 |
84 | Hancock and Chapple [105] | 2009 | 94 | 99 | 1034 | 1058 | 1608 |
85 | Andersson and Hughes [106] | 2011 | 115 | 161 | 1032 | 1021 | 1625 |
86 | Harder et al. [107] | 2006 | 74 | 144 | 1029 | 1069 | 1684 |
87 | Epand and Vogel [108] | 2008 | 85 | 135 | 1022 | 1009 | 1442 |
88 | Ling et al. [109] | 2010 | 101 | 154 | 1009 | 1010 | 1594 |
89 | Cohen [110] | 1999 | 48 | 35 | 1004 | 1067 | 1857 |
90 | Umezawa et al. [111] | 1992 | 35 | 23 | 990 | 814 | 1214 |
91 | Cabello [112] | 2015 | 198 | 198 | 989 | 1049 | 1691 |
92 | Kenawy et al. [113] | 2008 | 81 | 135 | 975 | 1000 | 1303 |
93 | Hancock [114] | 1997 | 42 | 30 | 968 | 991 | 1448 |
94 | Moazed and Noller [115] | 2008 | 80 | 84 | 963 | 900 | 1281 |
95 | Baquero et al. [116] | 2007 | 74 | 91 | 961 | 1015 | 1587 |
96 | Spellberg et al. [117] | 1966 | 18 | 17 | 959 | 988 | 1598 |
97 | Wang et al. [118] | 2000 | 48 | 46 | 956 | 985 | 1476 |
98 | Zhang et al. [119] | 1987 | 29 | 27 | 947 | 1053 | 1162 |
99 | Krause et al. [120] | 1993 | 35 | 30 | 944 | 950 | 1549 |
100 | Prezant et al. [121] | 2004 | 59 | 59 | 940 | 906 | 1397 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, A.I.; Ahmad, P.; Karobari, M.I.; Asif, J.A.; Alam, M.K.; Mahmood, Z.; Abd Rahman, N.; Mamat, N.; Kamal, M.A. Antibiotics: A Bibliometric Analysis of Top 100 Classics. Antibiotics 2020, 9, 219. https://doi.org/10.3390/antibiotics9050219
Arshad AI, Ahmad P, Karobari MI, Asif JA, Alam MK, Mahmood Z, Abd Rahman N, Mamat N, Kamal MA. Antibiotics: A Bibliometric Analysis of Top 100 Classics. Antibiotics. 2020; 9(5):219. https://doi.org/10.3390/antibiotics9050219
Chicago/Turabian StyleArshad, Anas Imran, Paras Ahmad, Mohmed Isaqali Karobari, Jawaad Ahmed Asif, Mohammad Khursheed Alam, Zuliani Mahmood, Normastura Abd Rahman, Noraida Mamat, and Mohammad Amjad Kamal. 2020. "Antibiotics: A Bibliometric Analysis of Top 100 Classics" Antibiotics 9, no. 5: 219. https://doi.org/10.3390/antibiotics9050219
APA StyleArshad, A. I., Ahmad, P., Karobari, M. I., Asif, J. A., Alam, M. K., Mahmood, Z., Abd Rahman, N., Mamat, N., & Kamal, M. A. (2020). Antibiotics: A Bibliometric Analysis of Top 100 Classics. Antibiotics, 9(5), 219. https://doi.org/10.3390/antibiotics9050219