Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance Profiles
2.2. Virulence Genes
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Antimicrobial Susceptibility Testing
4.3. Virulence Genes
4.4. Evaluation
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antibiotic resistance, WHO, Geneva, Switzerland. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 23 March 2020).
- Bradford, P.A. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanz, R.; Kuhnert, P.; Boerlin, P. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Veter. Microbiol. 2003, 91, 73–84. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Dai, L.; Xia, L.-N.; Du, X.-D.; Qi, Y.-H.; Liu, H.-B.; Wu, C.-M.; Shen, J.-Z. Increased Prevalence of Plasmid-Mediated Quinolone Resistance Determinants in Chicken Escherichia coli Isolates from 2001 to 2007. Foodborne Pathog. Dis. 2009, 6, 1203–1209. [Google Scholar] [CrossRef]
- Boerlin, P.; Travis, R.; Gyles, C.L.; Reid-Smith, R.; Lim, N.J.H.; Nicholson, V.; McEwen, S.A.; Friendship, R.; Archambault, M. Antimicrobial Resistance and Virulence Genes of Escherichia coli Isolates from Swine in Ontario. Appl. Environ. Microbiol. 2005, 71, 6753–6761. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics. WHO, Geneva, Switzerland. Available online: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (accessed on 23 March 2020).
- Fairbrother, J.M.; Nadeau, E.; Gyles, C. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim. Heal. Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Zajacova, Z.S.; Konstantinová, L.; Alexa, P. Detection of virulence factors of Escherichia coli focused on prevalence of EAST1 toxin in stool of diarrheic and non-diarrheic piglets and presence of adhesion involving virulence factors in astA positive strains. Veter. Microbiol. 2012, 154, 369–375. [Google Scholar] [CrossRef]
- Nagy, B.; A Casey, T.; Whipp, S.C.; Moon, H.W. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age. Infect. Immun. 1992, 60, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Ngeleka, M.; Pritchard, J.; Appleyard, G.; Middleton, D.M.; Fairbrother, J.M. Isolation and association of Escherichia coli AIDA-I/STb, rather than EAST1 pathotype, with diarrhea in piglets and antibiotic sensitivity of isolates. J. Veter. Diagn. Investig. 2003, 15, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Ravi, M.; Ngeleka, M.; Kim, S.-H.; Gyles, C.; Berthiaume, F.; Mourez, M.; Middleton, D.; Simko, E. Contribution of AIDA-I to the pathogenicity of a porcine diarrheagenic Escherichia coli and to intestinal colonization through biofilm formation in pigs. Veter. Microbiol. 2007, 120, 308–319. [Google Scholar] [CrossRef]
- Choi, C.; Kwon, D.; Chae, C. Prevalence of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene and its relationship with fimbrial and enterotoxin genes in E. coli isolated from diarrheic piglets. J. Vet. Diagn. Investig. 2001, 13, 26–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairbrother, J.M.; Nadeau, E. Colibacillosis. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 807–834. [Google Scholar]
- McDaniel, T.K.; Jarvis, K.G.; Donnenberg, M.; Kaper, J. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 1995, 92, 1664–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Chapman, T.; Wu, X.-Y.; Barchia, I.; Bettelheim, K.A.; Driesen, S.; Trott, D.; Wilson, M.R.; Chin, J.J.-C. Comparison of Virulence Gene Profiles of Escherichia coli Strains Isolated from Healthy and Diarrheic Swine. Appl. Environ. Microbiol. 2006, 72, 4782–4795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R. Virulence Factors in Escherichia coli Urinary Tract Infection. Clin. Microbiolo. Rev. 1991, 4, 49. [Google Scholar] [CrossRef]
- Toth, I.; Oswald, E.; Mainil, J.G.; Awad-Masalmeh, M.; Nagy, B. Characterization of intestinal cnf1+ Escherichia coli from weaned pigs. Int. J. Med. Microbiol. 2000, 290, 539–542. [Google Scholar] [CrossRef]
- Hendriksen, R.; Mevius, D.; Schroeter, A.; Teale, C.; Jouy, E.; Butaye, P.; Franco, A.; Utinane, A.; Amado, A.; Moreno, M.A.; et al. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002–2004: the ARBAO-II study. Acta Veter. Scand. 2008, 50, 19. [Google Scholar] [CrossRef] [Green Version]
- Grave, K.; Torren-Edo, J.; Muller, A.; Greko, C.; Moulin, G.; Mackay, D.; Fuchs, K.; Laurier, L.; Iliev, D.; Pokludova, L.; et al. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J. Antimicrob. Chemother. 2014, 69, 2284–2291. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-K.; Lee, H.-S.; Nam, H.-M.; Cho, Y.S.; Kim, J.-M.; Song, S.-W.; Park, Y.-H.; Jung, S.-C. Antimicrobial resistance observed in Escherichia coli strains isolated from fecal samples of cattle and pigs in Korea during 2003–2004. Int. J. Food Microbiol. 2007, 116, 283–286. [Google Scholar] [CrossRef]
- Aguirre, L.; Vidal, A.; Seminati, C.; Tello, M.; Redondo, N.; Darwich, L.; Martín, M. Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. Porc. Heal. Manag. 2020, 6, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Brand, P.; Gobeli, S.; Perreten, V. Pathotyping and antibiotic resistance of porcine enterovirulent Escherichia coli strains from Switzerland (2014–2015). Schweiz Arch Tierheilkd. 2017, 159, 373–380. [Google Scholar] [CrossRef]
- Kaspar, H.; Steinacker, U.; Karaalp, A.K.; Ballhausen, B.; Kluge, M. BVL-Report 13.7: Bericht zur Resistenzmonitoringstudie; BVL: Berlin, Germany, 2017; pp. 18–19. [Google Scholar]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, L.B.; Birk, T.; Høg, B.B.; Stehr, L.; Aabo, S.; Korsgaard, H. Cross and co resistance among Danish porcine E. coli isolates. Res. Vet. Sci. 2018; 119, 247–249. [Google Scholar] [CrossRef] [Green Version]
- Jensen, V.F.; Jakobsen, L.; Emborg, H.-D.; Seyfarth, A.M.; Hammerum, A.M. Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli. J. Antimicrob. Chemother. 2006, 58, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béraud, R.; Huneault, L.; Bernier, D.; Beaudry, F.; Letellier, A.; Del Castillo, J.R. Comparison of the selection of antimicrobial resistance in fecal Escherichia coli during enrofloxacin administration with a local drug delivery system or with intramuscular injections in a swine model. Can. J. Veter. Res. 2008, 72, 311–319. [Google Scholar]
- Lupo, A.; Saras, E.; Madec, J.-Y.; Haenni, M. Emergence of blaCTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. J. Antimicrob. Chemother. 2018, 73, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liao, C.; Chang, S.; Ding, K.; Liu, Z.; Xue, Y. NDM-1-producing Escherichia coli isolated from pigs induces persistent infection with limited pathogenicity. Microb. Pathog. 2019, 135, 103620. [Google Scholar] [CrossRef]
- The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2019, 17. [CrossRef]
- Fischer, J.; José, M.S.; Roschanski, N.; Schmoger, S.; Baumann, B.; Irrgang, A.; Friese, A.; Roesler, U.; Helmuth, R.; Guerra, B. Spread and persistence of VIM-1 Carbapenemase-producing Enterobacteriaceae in three German swine farms in 2011 and 2012. Veter. Microbiol. 2017, 200, 118–123. [Google Scholar] [CrossRef]
- Irrgang, A.; Fischer, J.; Grobbel, M.; Schmoger, S.; Skladnikiewicz-Ziemer, T.; Thomas, K.; Hensel, A.; Tenhagen, B.-A.; Käsbohrer, A. Recurrent detection of VIM-1-producing Escherichia coli clone in German pig production. J. Antimicrob. Chemother. 2017, 72, 944–946. [Google Scholar] [CrossRef] [Green Version]
- Pulss, S.; Semmler, T.; Prenger-Berninghoff, E.; Bauerfeind, R.; Ewers, C. First report of an Escherichia coli strain from swine carrying an OXA-181 carbapenemase and the colistin resistance determinant MCR-1. Int. J. Antimicrob. Agents. 2017, 50, 232–236. [Google Scholar] [CrossRef]
- Luppi, A.; Gibellini, M.; Gin, T.; Vangroenweghe, F.; Vandenbroucke, V.; Bauerfeind, R.; Bonilauri, P.; Labarque, G.; Hidalgo, Á. Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhea in Europe. Porc. Heal. Manag. 2016, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Frydendahl, K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhea and edema disease in pigs and a comparison of diagnostic approaches. Veter. Microbiol. 2002, 85, 169–182. [Google Scholar] [CrossRef]
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazono, H.; Takeda, Y.; Yoshida, O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Vu-Khac, H.; Holoda, E.; Pilipčinec, E. Distribution of Virulence Genes in Escherichia coli Strains Isolated from Diarrhoeic Piglets in the Slovak Republic. J. Veter. Med. Ser. B. 2004, 51, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Niewerth, U.; Frey, A.; Voss, T.; Le Bouguénec, C.; Baljer, G.; Franke, S.; Schmidt, M.A. The AIDA Autotransporter System Is Associated with F18 and Stx2e in Escherichia coli Isolates from Pigs Diagnosed with Edema Disease and Postweaning Diarrhea. Clin. Diagn. Lab. Immunol. 2001, 8, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Amezcua, R.; Friendship, R.M.; Dewey, C.E.; Gyles, C.; Fairbrother, J.M. Presentation of postweaning Escherichia coli diarrhea in southern Ontario, prevalence of hemolytic E. coli serogroups involved, and their antimicrobial resistance patterns. Can. J. Veter. Res. 2002, 66, 73–78. [Google Scholar]
- Do, T.; Stephens, C.; Townsend, K.; Wu, X.; A Chapman, T.; Chin, J.; McCormick, B.; Bara, M.; Trott, D. Rapid identification of virulence genes in enterotoxigenic Escherichia coli isolates associated with diarrhea in Queensland piggeries. Aust. Veter. J. 2005, 83, 293–299. [Google Scholar] [CrossRef]
- Müller, D.; Greune, L.; Heusipp, G.; Karch, H.; Fruth, A.; Tschaäpe, H.; Schmidt, M.A. Identification of Unconventional Intestinal Pathogenic Escherichia coli Isolates Expressing Intermediate Virulence Factor Profiles by Using a Novel Single-Step Multiplex PCR. Appl. Environ. Microbiol. 2007, 73, 3380–3390. [Google Scholar] [CrossRef] [Green Version]
- Tseng, S.-P.; Wang, S.-F.; Kuo, C.-Y.; Huang, J.-W.; Hung, W.-C.; Ke, G.-M.; Lu, P.-L. Characterization of Fosfomycin Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Human and Pig in Taiwan. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Pinior, B.; Firth, C.; Loitsch, A.; Stockreiter, S.; Hutter, S.; Richter, V.; Lebl, K.; Schwermer, H.; Käsbohrer, A. Cost distribution of bluetongue surveillance and vaccination programmes in Austria and Switzerland (2007–2016). Veter. Rec. 2018, 182, 257. [Google Scholar] [CrossRef] [Green Version]
- Schratz, P. R Package ’Oddsratio’: Odds Ratio Calculation for GAM(M)s & GLM(M)s; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
Non-Hemolytic E. coli | Hemolytic E. coli | Non-Hemolytic ESBL-Producing E. coli | All E. coli Isolates | |
---|---|---|---|---|
Ampicillin | 66.3% | 58.2% | 100.0% | 71.9% |
Tetracycline | 67.5% | 63.4% | 71.9% | 67.7% |
Trimethoprim-Sulfamethoxazole | 3.2% | 45.4% | 63.0% | 49.5% |
Chloramphenicol | 16.9% | 20.8% | 19.9% | 18.5% |
Gentamicin | 4.0% | 8.4% | 15.4% | 7.7% |
Tobramycin | 4.2% | 6.6% | 10.9% | 6.2% |
Ciprofloxacin | 14.3% | 10.0% | 27.2% | 16.4% |
Ceftazidime | 1.2% | 0.0% | 30.9% | 5.9% |
Aztreonam | 0.3% | 0.0% | 7.7% | 2.2% |
Fosfomycin | 2.8% | 2.5% | 0.0% | 2.0% |
Amikacin | 0.0% | 0.0% | 0.0% | 0.0% |
Meropenem | 0.0% | 0.0% | 0.0% | 0.0% |
Elt | Sta | AstA | Elt, Sta | Elt, Stb | Elt, AstA | Sta, AstA | Elt, Sta, AstA | |
FaeG (F4) | 17 | 3 | 5 | 3 | 1 | 14 | 2 | 1 |
FanC (F5) | 2 | 1 | ||||||
FasA (F6) | 1 | |||||||
FaeG (F4), AidA | 1 | 1 | ||||||
FasA (F6), AidA | 1 | |||||||
FedA (F18), AidA | 2 |
Elt | Sta | AstA | Elt, Sta | Elt, AstA | Sta, AstA | Stx2 | |
---|---|---|---|---|---|---|---|
FaeG (F4) | 13 | 1 | 6 | 14 | |||
FanC (F5) | 1 | ||||||
FedA (F18) | 1 | 2 | 2 | 1 | 2 | ||
FaeG (F4), AidA | 1 | ||||||
FedA (F18), AidA | 11 | ||||||
FaeG (F4), FedA (F18), AidA | 1 | 1 |
n | AidA | FaeG | FanC | FasA | FedA | Fim41A | Elt | Sta | Stb | AstA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Non-Hemolytic E. coli | 264 | 3.0% | 8.0% | 2.3% | 0.8% | 1.5% | 0.0% | 3.8% | 1.5% | 3.4% | 10.2% |
Hemolytic E. coli | 58 | 8.6% | 69.0% | 0.0% | 1.7% | 6.9% | 3.4% | 51.7% | 17.2% | 1.7% | 31.0% |
Non Hemolytic ESBL-Producing E. coli | 122 | 2.5% | 2.5% | 0.0% | 0.0% | 0.0% | 0.0% | 4.1% | 0.8% | 1.6% | 15.6% |
n | AidA | FaeG | FedA | Elt | Sta | AstA | Stx2 | |
---|---|---|---|---|---|---|---|---|
Non-Hemolytic E. coli | 121 | 16.5% | 15.7% | 7.4% | 9.9% | 3.3% | 14.0% | 4.1% |
Hemolytic E. coli | 77 | 27.3% | 33.8% | 36.4% | 35.1% | 9.1% | 22.1% | 15.6% |
Non-Hemolytic ESBL–Producing E. coli | 39 | 5.1% | 7.7% | 2.6% | 12.8% | 5.1% | 10.3% | 0.0% |
Antibiotic | Concentration (µg/mg) | Breakpoint (mm) | |
---|---|---|---|
S | R | ||
Ampicillin | 10 | ≥17 | ≤13 |
Tetracycline | 30 | ≥15 | ≤11 |
Trimethoprim-Sulfamethoxazole | 1.2523.75 | ≥16 | ≤10 |
Chloramphenicol | 30 | ≥18 | ≤12 |
Gentamicin | 10 | ≥15 | ≤12 |
Tobramycin | 10 | ≥15 | ≤12 |
Ciprofloxacin | 5 | ≥21 | ≤15 |
Ceftazidime | 30 | ≥21 | ≤17 |
Aztreonam | 30 | ≥21 | ≤17 |
Fosfomycin | 200 | ≥16 | ≤12 |
Amikacin | 30 | ≥17 | ≤14 |
Meropenem | 10 | ≥23 | ≤19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renzhammer, R.; Loncaric, I.; Roch, F.-F.; Pinior, B.; Käsbohrer, A.; Spergser, J.; Ladinig, A.; Unterweger, C. Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria. Antibiotics 2020, 9, 208. https://doi.org/10.3390/antibiotics9040208
Renzhammer R, Loncaric I, Roch F-F, Pinior B, Käsbohrer A, Spergser J, Ladinig A, Unterweger C. Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria. Antibiotics. 2020; 9(4):208. https://doi.org/10.3390/antibiotics9040208
Chicago/Turabian StyleRenzhammer, René, Igor Loncaric, Franz-Ferdinand Roch, Beate Pinior, Annemarie Käsbohrer, Joachim Spergser, Andrea Ladinig, and Christine Unterweger. 2020. "Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria" Antibiotics 9, no. 4: 208. https://doi.org/10.3390/antibiotics9040208
APA StyleRenzhammer, R., Loncaric, I., Roch, F. -F., Pinior, B., Käsbohrer, A., Spergser, J., Ladinig, A., & Unterweger, C. (2020). Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria. Antibiotics, 9(4), 208. https://doi.org/10.3390/antibiotics9040208