Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting
Abstract
1. Introduction
2. Risk Factors for Resistance
3. Empiric Treatment Guidelines
3.1. Hospital Acquired Pneumonia and Ventilator Associated Pneumonia
3.2. Blood Stream Infections
3.3. Intra-Abdominal Infections
3.4. Urinary Tract Infections
3.5. Therapeutic Approaches to Gram-Negative Infections
3.6. The Resurgence of Old Antibiotics
3.6.1. Colistin
3.6.2. Fosfomycin
3.6.3. New Antibiotics
3.6.4. Plazomicin
3.6.5. Tigecycline
3.6.6. Ceftolozane-Tazobactam
3.6.7. Aztreonam
3.6.8. Ceftazidime-Avibactam
3.6.9. Imipenem-Colistatin Plus Relebactam
3.6.10. Cefiderocol
3.6.11. Eravacycline
3.6.12. Meropenem-Vaborbactam
3.7. Other Therapeutic Approaches
3.8. Antibiotic Stewardship
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention. The Biggest Antibiotic-Resistant Threats in the U.S. 2013. Available online: https://www.cdc.gov/drugresistance/biggest_threats.html (accessed on 8 March 2019).
- Centers for Disease Control and Prevention. The Biggest Antibiotic-Resistant Threats in the U.S. 2019. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 15 November 2019).
- Kaye, K.; Pogue, J. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management. Pharm. J. Hum. Pharmacol. Drug Ther. 2015, 35, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Cesar, A.A. Mechanisms of Antibiotic Resistance. Virulence Mech. Bact. Pathog. 2016, 481–511. [Google Scholar] [CrossRef]
- Cerceo, E.; Deitelzweig, S.; Sherman, B.; Amin, A. Multidrug-Resistant Gram-Negative Bacterial Infections in the Hospital Setting: Overview, Implications for Clinical Practice, and Emerging Treatment Options. Microb. Drug Resist. 2016, 22, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Tselebonis, A.; Nena, E. Monitoring of Frequency and Antimicrobial Susceptibility of Pathogens on the Hands of Healthcare Workers in a Tertiary Hospital. Folia Med. 2016, 58, 200–205. [Google Scholar] [CrossRef]
- MacVane, S. Antimicrobial Resistance in the Intensive Care Unit. J. Intensive Care Med. 2016, 32, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lee, C.E. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef]
- Burillo, A.; Munoz, P.; Bouza, E. Risk stratification for multidrug-resistant Gram-negative infections in ICU patients. Curr. Opin. Infect. Dis. 2019, 32, 626–637. [Google Scholar] [CrossRef]
- Dantas, L.F. Predicting Acquisition of Carbapenem-Resistant Gram-Negative Pathogens in Intensive Care Units. J. Hosp. Infect. 2019, 103, 121–127. [Google Scholar] [CrossRef]
- Osthoff, M.; McGuinness, S. Urinary tract infections due to extended-spectrum beta-lactam- producing Gram- negative bacteria: Identification of risk factors and outcome predictors in an Australian tertiary referral hospital. Int. J. Infect. Dis. 2015, 34, 79–83. [Google Scholar] [CrossRef]
- Razazi, K.; Derde, L. Clinical impact and risk factors for colonization with extended-spectrum b-lactamase producing bacteria in the intensive care unit. Intensive Care Med. 2012, 38, 1769–1778. [Google Scholar] [CrossRef]
- Leal, H.F.; Azevedo, J.; Silva, G.E.O. Bloodstream infections caused by multidrug-resistant gram-negative bacteria: Epidemiological, clinical and microbiological features. BMC Infect. Dis. 2019, 19, 609. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Larson, E.L. Risk of drug resistance in repeat gram-negative infections among patients with multiple hospitalizations. J. Crit. Care 2018, 43, 260–264. [Google Scholar] [CrossRef]
- Raman, G.; Avendano, E.; Berger, S.; Menon, V. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: Systematic review and meta-analysis. BMC Infect. Dis. 2015, 15, 395. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.J. Predicting Risk of Drug-Resistant Organisms in Pneumonia: Moving beyond the HCAP Model. Respir. Med. 2015, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American. Thoracic. Soc. Clin. Infect. Dis. 2016, 63, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control. Guidelines for the Prevention of Intravascular Catheter-Related Infections. 2011. Available online: https://www.cdc.gov/infectioncontrol/guidelines/bsi/index.html (accessed on 6 June 2019).
- Naomi, P.; O’Grady, N.; Alexander, M. The Healthcare Infection Control Practices Advisory Committee (HICPAC) (Appendix 1), Guidelines for the Prevention of Intravascular Catheter-related Infections. Clin. Infect. Dis. 2011, 52, e162–e193. [Google Scholar]
- Gulen, T.A. Clinical Importance and Cost of Bacteremia Caused by Nosocomial Multi Drug Resistant Acinetobacter Baumannii. Int. J. Infect. Dis. 2015, 38, 32–35. [Google Scholar] [CrossRef]
- Justo, J.A.; Bookstaver, P.B. Combination therapy vs. monotherapy for Gram-negative bloodstream infection: Matching by predicted prognosis. Int. J. Antimicrob. Agents 2018, 51, 488–492. [Google Scholar] [CrossRef]
- Leone, S.; Damiani, G.; Pezone, I. New Antimicrobial Options for the Management of Complicated Intraabdominal Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 819. [Google Scholar] [CrossRef]
- Herzog, T.; Chromik, A.M.; Uhl, W. Treatment of complicated intra-abdominal infections in the era of multi-drug resistant bacteria. Eur. J. Med. Res. 2010, 15, 525–532. [Google Scholar] [CrossRef]
- Solomkin, J.S.; Mazuski, J.E. Diagnosis and Management of Complicated Intra-abdominal Infection in Adults and Children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2017, 129, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Bent, S.; Nallamothu, B.K.; Simel, D.L.; Fihn, S.D.; Saint, S. Does This Woman Have an Acute Uncomplicated Urinary Tract Infection? JAMA 2002, 287, 2701–2710. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed]
- Hooton, T.M.; Bradley, S.F. Diagnosis, Prevention, and Treatment of Catheter-Associated Urinary Tract Infection in Adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 625–663. [Google Scholar] [CrossRef] [PubMed]
- United States Task Force for Combating Antibiotic-Resistant Bacteria [online] National Action Plan for Combating Antibiotic-Resistant Bacteria. Available online: https://aspe.hhs.gov/system/files/pdf/258516/ProgressYears1and2CARBNationalActionPlan.pdf (accessed on 28 September 2019).
- Karaiskos, I. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: Current and emerging therapeutic approaches. Expert Opin. Pharmacother. 2014, 15, 1351–1370. [Google Scholar] [CrossRef]
- Mohamed, Y.F.; Abou-Shleib, H.M. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates. Braz. J. Microbiol. 2016, 47, 381–388. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Y.; Yi, L.; Liu, J.; Yang, Q. Emergent Polymyxin Resistance: End of an Era? Open Forum Infect. Dis. 2019, 6, ofz368. [Google Scholar] [CrossRef]
- Temocin, F.; Erdinc, F.S.; Tulek, N. Synergistic effects of sulbactam in multi-drug-resistant Acinetobacter baumannii. Braz. J. Microbiol. 2015, 46, 1119–1124. [Google Scholar] [CrossRef]
- Karaiskos, I.; Lagou, S. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef]
- Rhodes, N.J.; Crudes, C.E. Resistance Trends and Treatment Options in Gram-Negative Ventilator-Associated Pneumonia. Curr. Infect. Dis. Rep. 2018, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.; Cloutier, D. Once- Daily Plazomicin for Complicated Urinary Tract Infections. N. Engl. J. Med. 2019, 380, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Salguero, C.; Rodríguez-Avial, I.; Picazo, J.J.; Culebras, E. Can Plazomicin Alone or in Combination Be a Therapeutic Option against Carbapenem-Resistant Acinetobacter baumannii? Antimicrob. Agents Chemother. 2015, 59, 5959–5966. [Google Scholar] [CrossRef]
- Trebosc, V.; Gartenmann, S.; Royet, K. A Novel Genome-Editing Platform for Drug-Resistant Acinetobacter baumannii Reveals an AdeR-Unrelated Tigecycline Resistance Mechanism. Antimicrob. Agents Chemother. 2016, 60, 7263–7271. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Bassetti, M. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: Report from an antimicrobial surveillance programme (2012–15). J. Antimicrob. Chemother. 2017, 72, 1386–1395. [Google Scholar] [CrossRef]
- Kish, T. New Antibiotics in Development Target Highly Resistant Gram-Negative Organisms. Pharm. Ther. 2018, 43, 116–120. [Google Scholar]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03329092 (accessed on 2 December 2019).
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT02655419#wrappe (accessed on 2 December 2019).
- Emeraud, C.; Escaut, L. Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-Beta-Lactamase- Producing Gram- Negative Bacteria. Antimicrob. Agents Chemother. 2019, 63, e00010-19. [Google Scholar] [CrossRef]
- Park, B. Aztreonam + Avibactam Combo Therapy Granted QIDP, Fast Track Status for Antibiotic-Resistant Infections. MPR. 2019. Available online: https://www.empr.com/home/news/drugs-in-the-pipeline/aztreonam-avibactam-combo-therapy-granted-qidp-fast-track-status-for-antibiotic-resistant-infections/ (accessed on 17 November 2019).
- Sader, H.S.; Castanheira, M.; Flamm, R.K. Antimicrobial Activity of Ceftazidime-Avibactam against Gram-Negative Bacteria Isolated from Patients Hospitalized with Pneumonia in U.S. Medical Centers, 2011 to 2015. Antimicrob. Agents Chemother. 2017, 61, e02083-16. [Google Scholar] [CrossRef]
- Torres, A.; Rank, D.; Melnick, D. Randomized Trial of Ceftazidime-Avibactam vs Meropenem for Treatment of Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia (REPROVE): Analyses per US FDA-Specified End Points. Open Forum Infect. Dis. 2019, 6, ofz149. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Motsch, J.; de Oliveira, C.M. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Negash, K.H.; Norris, J.K.S.; Hodgkinson, J.T. Siderophore-Antibiotic Conjugate Design: New Drugs for Bad Bugs? Molecules 2019, 24, 3314. [Google Scholar] [CrossRef] [PubMed]
- Cun-Bao, L.I.U.; Bin, S.H.A.N.; Hong-Mei, B.A.I.; Jing, T.A.N.G.; Long-Zong, Y.A.N.; Yan-Bing, M.A. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates. Zool. Res. 2015, 36, 41. [Google Scholar]
- Qi, J.; Gao, R.; Liu, C. Potential role of the antimicrobial peptide Tachyplesin III against multidrug-resistant P. aeruginosa and A. baumannii coinfection in an animal model. Infect. Drug Resist. 2019, 12, 2865–2874. [Google Scholar] [CrossRef]
- Domingo-Calap, P.; Delgado-Martínez, J. Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics 2018, 7, 66. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Shivani, S.; Poladi, K. Nanosponges-Novel Emerging Drug Delivery System: A Review. Int. J. Pharm. Sci. Res. 2015, 6, 529–540. [Google Scholar]
- Vadlamani, A.; Detwiler, D.A. Synergistic bacterial inactivation by combining antibiotics with nanosecond electric pulses. Appl. Microbiol. Biotechnol. 2018, 102, 7589–7596. [Google Scholar] [CrossRef]
- Rhodes, N.L.; De la Presa, M. Violet 405 nm light: A novel therapeutic agent against β-lactam-resistant Escherichia coli. Lasers Surg. Med. 2016, 48, 311–317. [Google Scholar] [CrossRef]
- Tomb, R.M.; White, T.A. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem. Photobiol. 2018, 94, 445–458. [Google Scholar] [CrossRef]
- Mohamed, M.; Raeesi, V. A versatile plasmonic thermogel for disinfection of antimicrobial resistant bacteria. Biomaterials 2016, 97, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Dellit, T.H.; Owens, R.C. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef]
- Centers for Disease Control. Core Elements of Hospital Antimicrobial Stewardship Programs. Available online: https://www.cdc.gov/antibiotic-use/healthcare/pdfs/core-elements.pdf (accessed on 7 November 2019).
- Centers for Disease Control. Antibiotic Stewardship Statement for Antibiotic Guidelines. Available online: https://www.cdc.gov/hicpac/recommendations/antibiotic-stewardship-statement.html (accessed on 7 November 2019).
- Cook, P.P.; Gooch, M. Long-term effects of an antimicrobial stewardship programme at a tertiary-careteaching hospital. Int. J. Antimicrob. Agents 2015, 45, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.K.; Olsen, R.J.; Musick, W.L. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J. Infect. 2014, 69, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Goff, D.A.; Mangino, J.E.; Reed, E.E.; Wehr, A.; Bauer, K.A. Impact of rapid identification of Acinetobacter Baumannii via matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with antimicrobial stewardship in patients with pneumonia and/or bacteremia. Diagn. Microbiol. Infect. Dis. 2016, 84, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics Overuse in Animal Agriculture: A Call to Action for Health Care Providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Mercanoglu Taban, B. A State-of-Art Review on Multi-Drug Resistant Pathogens in Foods of Animal Origin: Risk Factors and Mitigation Strategies. Front. Microbiol. 2019, 10, 2091. [Google Scholar] [CrossRef]
- Biochemical Society (Great Britain). Antibiotic Resistance in Grass and Soil. Biochem. Soc. Trans. 2019, 47, 477–486. [Google Scholar] [CrossRef]
- Markland, S.; Weppelmann, T.A.; Ma, Z. High Prevalence of Cefotaxime Resistant Bacteria in Grazing Beef Cattle: A Cross Sectional Study. Front. Microbiol. 2019, 10, 176. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Chaudhury, R.R. Antibiotic Resistance in India: Drivers and Opportunities for Action. PLoS Med. 2016, 13, e1001974. [Google Scholar] [CrossRef]
- Wang, X. Massive Misuse of Antibiotics by University Students in All Regions of China: Implications for National Policy. Int. J. Antimicrob. Agents 2017, 50, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Wang, X.; Xu, Y.; Sun, C.; Zhou, X. Antibiotic misuse among university students in developed and less developed regions of China: A cross-sectional survey. Glob. Health Action 2018, 11, 1496973. [Google Scholar] [CrossRef] [PubMed]
- Haddadin, R.N.; Alsous, M.; Wazaify, M.; Tahaineh, L. Evaluation of antibiotic dispensing practice in community pharmacies in Jordan: A cross sectional study. PLoS ONE 2019, 14, e0216115. [Google Scholar] [CrossRef]
- Archarya, K.P.; Wilson, R.T. Antimicrobial Resistance in Nepal. Front. Med. 2019, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Hadi, U.; van den Broek, P.; Kolopaking, E.P. Cross-sectional study of availability and pharmaceutical quality of antibiotics requested with or without prescription (Over The Counter) in Surabaya, Indonesia. BMC Infect. Dis. 2010, 10, 203. [Google Scholar] [CrossRef] [PubMed]
Source of Infection | Common Pathogens |
---|---|
Gastro-Duodenum | Streptococcus spp., E. coli |
Small/Large Bowel | E. coli, K. pneumoniae, P. mirabilis, Bacteroides spp., Clostridium spp., anaerobes |
Biliary Tree | Enterococcus spp., E. coli, K. pneumoniae, P. mirabilis, Bacteroides spp., Clostridium spp. |
Appendix | E. coli, P. aeruginosa, Bacteroides spp. |
Liver | Enterococcus spp., K. pneumoniae, E. coli, Bacteroides spp. |
Spleen | Streptococcus spp., Staphylococci |
Abscess | Enterococcus spp., E. coli, K. pneumoniae, Bacteroides spp., Clostridium spp., anaerobes |
Antimicrobial Agent | Targets | Approvals |
---|---|---|
Plazomicin | MDR E. coli, K. pneumoniae, P. mirabilis, A. baumannii | cUTI and pyelonephritis |
Tigecycline | ESBL, CR Enterobacteriaceae, A. baumannii | cIAI and cSSI |
Ceftolozane-tazobactam | MDR P. aeruginosa, Enterobacteriaceae spp. | cIAI, cUTI, HAP, and VAP |
Aztreonam-avibactam | ESBL A baumannii, P. aeruginosa (Ambler Class A-D) | cIAI |
Ceftazidime-avibactam | MDR Enterobacteriaceae spp., P. aeruginosa | cIAI, pyelonephritis, cUTI, HAP, and VAP |
Imipenem-colistatin-relebactam | MDR K. pneumoniae, P. aeruginosa | cUTI, cIAI |
Cefiderocol | MDR, CR P. aeruginosa, A. baumannii | cUTI, pyelonephritis |
Eravacycline | ESBL, CR Enterobacteriaceae spp., MRSA, A. baumannii, VRE | cUTI, cIAI |
Meropenem-vaborbactam | ESBL, CR Enterobacteriaceae (Ambler Class A and C) | cUTI, pyelonephritis, cIAI, HAP, VAP, and BSI |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, S.; Cerceo, E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics 2020, 9, 196. https://doi.org/10.3390/antibiotics9040196
Morris S, Cerceo E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics. 2020; 9(4):196. https://doi.org/10.3390/antibiotics9040196
Chicago/Turabian StyleMorris, Sabrina, and Elizabeth Cerceo. 2020. "Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting" Antibiotics 9, no. 4: 196. https://doi.org/10.3390/antibiotics9040196
APA StyleMorris, S., & Cerceo, E. (2020). Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics, 9(4), 196. https://doi.org/10.3390/antibiotics9040196