Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of Bacterial Strains
2.2. Antimicrobial Susceptibility Test
2.3. Detection of Van Genes
2.4. Detection and Sequencing of Extended Spectrum Lactamase and AmpC Genes
2.5. Detection of Virulence Factors in Enterococcus Species
2.6. Detection of Virulence Factors in Enterobacteriaceae
3. Discussion
4. Material and Methods
4.1. Study Design
4.2. Isolation and Identification of Bacterial Strains
4.3. Antimicrobial Susceptibility Test
4.4. Detection of Van Genes
4.5. Detection and Sequencing of Extended Spectrum Lactamase and AmpC Genes
4.6. Detection of Virulence Factors Cytolysin, Gelatinase, and Aggregation Substance (AS) Production in Enterococcus Species
4.7. Detection of Virulence Genes in Enterococcus Species by PCR
4.8. Detection of Virulence Factors Cytolysin (Hemolysin) and Gelatinase Production in Enterobacteriaceae Species
4.9. PCR detection of Virulence Genes of Enterobacteriaceae Species
Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-resistant Infections Globally: Final Report and Recommendations. 2016. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 10 March 2020).
- Hammerum, A.M. Enterococci of animal origin and their significance for public health. Clin. Microbiol. Infect. 2012, 18, 619–625. [Google Scholar] [CrossRef]
- Suchodolski, J.S. Companion Animals Symposium: Microbes and gastrointestinal health of dogs and cats1. J. Anim. Sci. 2011, 89, 1520–1530. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. New Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argudin, M.A.; Deplano, A.; Meghraoui, A.; Dodemont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics 2017, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- The European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe—Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018 (accessed on 10 March 2020).
- AL-Khafaji, J.K.T.; Samaan, S.F.; AL-Saeed, M.S. Virulence Factors of Enterococcus faecalis. Med. J. Babylon 2010, 7, 579–583. [Google Scholar]
- Pillay, S.; Zishiri, O.T.; Adeleke, M.A. Prevalence of virulence genes in Enterococcus species isolated from companion animals and livestock. Onderstepoort J. Vet. Res. 2018, 85, e1–e8. [Google Scholar] [CrossRef] [Green Version]
- Kiruthiga, A.; Padmavathy, K.; Shabana, P.; Naveenkumar, V.; Gnanadesikan, S.; Malaiyan, J. Improved detection of esp, hyl, asa1, gelE, cylA virulence genes among clinical isolates of Enterococci. BMC Res. Notes 2020, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ostholm-Balkhed, A.; Tarnberg, M.; Nilsson, M.; Nilsson, L.E.; Hanberger, H.; Hallgren, A.; Travel Study Group of Southeast Sweden. Travel-associated faecal colonization with ESBL-producing Enterobacteriaceae: Incidence and risk factors. J. Antimicrob. Chemother. 2013, 68, 2144–2153. [Google Scholar] [CrossRef] [Green Version]
- Coque, T.M.; Baquero, F.; Canton, R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro. Surveill. 2008, 13. [Google Scholar]
- Wieler, L.H.; Ewers, C.; Guenther, S.; Walther, B.; Lubke-Becker, A. Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: Nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int. J. Med. Microbiol. 2011, 301, 635–641. [Google Scholar] [CrossRef]
- Dutil, L.; Irwin, R.; Finley, R.; Ng, L.K.; Avery, B.; Boerlin, P.; Bourgault, A.M.; Cole, L.; Daignault, D.; Desruisseau, A.; et al. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg. Infect. Dis. 2010, 16, 48–54. [Google Scholar] [CrossRef] [PubMed]
- EMA. Sales of Veterinary Antimicrobial Agents in 25 EU/EEA Countries in 2011. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-25-european-union/european-economic-area-countries-2011-third-european-surveillance-veterinary-antimicrobial_en.pdf (accessed on 10 March 2020).
- Schink, A.K.; Kadlec, K.; Schwarz, S. Analysis of bla(CTX-M)-carrying plasmids from Escherichia coli isolates collected in the BfT-GermVet study. Appl. Environ. Microbiol. 2011, 77, 7142–7146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierikx, C.M.; van Duijkeren, E.; Schoormans, A.H.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.W.; van der Zwaluw, K.; Wagenaar, J.A.; Mevius, D.J. Occurrence and characteristics of extended-spectrum-beta-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, E.; Kruger, J.M.; Schall, W.; Beal, M.; Manning, S.D.; Kaneene, J.B. Acquisition and persistence of antimicrobial-resistant bacteria isolated from dogs and cats admitted to a veterinary teaching hospital. J. Am. Vet. Med. Assoc. 2013, 243, 990–1000. [Google Scholar] [CrossRef] [Green Version]
- Gandolfi-Decristophoris, P.; Petrini, O.; Ruggeri-Bernardi, N.; Schelling, E. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in healthy companion animals living in nursing homes and in the community. Am. J. Infect. Control. 2013, 41, 831–835. [Google Scholar] [CrossRef]
- Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz. J. Microbiol. 2016, 47, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Schouten, M.A.; Voss, A.; Hoogkamp-Korstanje, J.A. Antimicrobial susceptibility patterns of enterococci causing infections in Europe. The European VRE Study Group. Antimicrob. Agents Chemother. 1999, 43, 2542–2546. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef]
- Kataoka, Y.; Umino, Y.; Ochi, H.; Harada, K.; Sawada, T. Antimicrobial susceptibility of enterococcal species isolated from antibiotic-treated dogs and cats. J. Vet. Med. Sci. 2014, 76, 1399–1402. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.; Poeta, P.; Martins, A.; Costa, D. The importance of pets as reservoirs of resistant Enterococcus strains, with special reference to vancomycin. J. Vet. Med. B Infect. Dis. Vet. Public Health 2002, 49, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.R.; Fedorka-Cray, P.J.; Davis, J.A.; Barrett, J.B.; Frye, J.G. Prevalence, species distribution and antimicrobial resistance of enterococci isolated from dogs and cats in the United States. J. Appl. Microbiol. 2009, 107, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Simjee, S.; White, D.G.; McDermott, P.F.; Wagner, D.D.; Zervos, M.J.; Donabedian, S.M.; English, L.L.; Hayes, J.R.; Walker, R.D. Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: Evidence of gene exchange between human and animal enterococci. J. Clin. Microbiol. 2002, 40, 4659–4665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leener, E.D.; Decostere, A.; De Graef, E.M.; Moyaert, H.; Haesebrouck, F. Presence and mechanism of antimicrobial resistance among enterococci from cats and dogs. Microb. Drug Resist. 2005, 11, 395–403. [Google Scholar] [CrossRef]
- Ghosh, A.; Kukanich, K.; Brown, C.E.; Zurek, L. Resident Cats in Small Animal Veterinary Hospitals Carry Multi-Drug Resistant Enterococci and are Likely Involved in Cross-Contamination of the Hospital Environment. Front. Microbiol. 2012, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Gulhan, T.; Boynukara, B.; Durmus, A.; Kiziroglu, I.; Sancak, Y.C. Enteric bacteria and some pathogenic properties of Enterococcus faecalis, Enterococcus faecium and Escherichia coli strains isolated from wild ducks and gulls. Fresen Environ. Bull. 2012, 21, 1961–1966. [Google Scholar]
- Dupre, I.; Zanetti, S.; Schito, A.M.; Fadda, G.; Sechi, L.A. Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J. Med. Microbiol. 2003, 52, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Iseppi, R.; Messi, P.; Anacarso, I.; Bondi, M.; Sabia, C.; Condo, C.; de Niederhausern, S. Antimicrobial resistance and virulence traits in Enterococcus strains isolated from dogs and cats. New Microbiol. 2015, 38, 369–378. [Google Scholar]
- Hallgren, A.; Claesson, C.; Saeedi, B.; Monstein, H.J.; Hanberger, H.; Nilsson, L.E. Molecular detection of aggregation substance, enterococcal surface protein, and cytolysin genes and in vitro adhesion to urinary catheters of Enterococcus faecalis and E. faecium of clinical origin. Int. J. Med. Microbiol. 2009, 299, 323–332. [Google Scholar] [CrossRef]
- Upadhyaya, G.P.; Lingadevaru, U.B.; Lingegowda, R.K. Comparative study among clinical and commensal isolates of Enterococcus faecalis for presence of esp gene and biofilm production. J. Infect. Dev. Ctries. 2011, 5, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Tsikrikonis, G.; Maniatis, A.N.; Labrou, M.; Ntokou, E.; Michail, G.; Daponte, A.; Stathopoulos, C.; Tsakris, A.; Pournaras, S. Differences in biofilm formation and virulence factors between clinical and fecal enterococcal isolates of human and animal origin. Microb. Pathog. 2012, 52, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Tenorio, C.; Torres, C. Study of vancomycin resistance in faecal enterococci from healthy humans and dogs in Spain a decade after the avoparcin ban in Europe. Zoonoses Public Health 2013, 60, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, Y.; Hasani, A.; Ghotaslou, R.; Naghili, B.; Aghazadeh, M.; Milani, M.; Bazmany, A. Virulence and antimicrobial resistance in enterococci isolated from urinary tract infections. Adv. Pharm. Bull. 2013, 3, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Di Cerbo, A.; Canello, S.; Guidetti, G.; Laurino, C.; Palmieri, B. Unusual antibiotic presence in gym trained subjects with food intolerance; a case report. Nutr. Hosp. 2014, 30, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Mazzeranghi, F.; Zanotti, C.; Di Cerbo, A.; Verstegen, J.P.; Cocco, R.; Guidetti, G.; Canello, S. Clinical efficacy of nutraceutical diet for cats with clinical signs of cutaneus adverse food reaction (CAFR). Pol. J. Vet. Sci. 2017, 20, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Cerbo, A.; Canello, S.; Guidetti, G.; Fiore, F.; Corsi, L.; Rubattu, N.; Testa, C.; Cocco, R. Adverse food reactions in dogs due to antibiotic residues in pet food: A preliminary study. Vet. Ital. 2018, 54, 137–146. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Guidetti, G.; Canello, S.; Cocco, R. A possible correlation between diet, serum oxytetracycline concentration and reproductive disturbances onset in bitches: Clinical observations and preliminary results. Turk. J. Vet. Anim. Sci. 2019, 43, 523–531. [Google Scholar] [CrossRef]
- Palmieri, B.; Di Cerbo, A.; Laurino, C. Antibiotic treatments in zootechnology and effects induced on the food chain of domestic species and, comparatively, the human specie. Nutr. Hosp. 2014, 29, 1427–1433. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Palatucci, A.T.; Rubino, V.; Centenaro, S.; Giovazzino, A.; Fraccaroli, E.; Cortese, L.; Ruggiero, G.; Guidetti, G.; Canello, S.; et al. Toxicological Implications and Inflammatory Response in Human Lymphocytes Challenged with Oxytetracycline. J. Biochem. Mol. Toxicol. 2016, 30, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Odore, R.; De Marco, M.; Gasco, L.; Rotolo, L.; Meucci, V.; Palatucci, A.T.; Rubino, V.; Ruggiero, G.; Canello, S.; Guidetti, G.; et al. Cytotoxic effects of oxytetracycline residues in the bones of broiler chickens following therapeutic oral administration of a water formulation. Poult. Sci. 2015, 94, 1979–1985. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Scarano, A.; Pezzuto, F.; Guidetti, G.; Canello, S.; Pinetti, D.; Genovese, F.; Corsi, L. Oxytetracycline-Protein Complex: The Dark Side of Pet Food. Open Public Health J. 2018, 11, 162–169. [Google Scholar] [CrossRef]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum beta-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hordijk, J.; Schoormans, A.; Kwakernaak, M.; Duim, B.; Broens, E.; Dierikx, C.; Mevius, D.; Wagenaar, J.A. High prevalence of fecal carriage of extended spectrum beta-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol. 2013, 4, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livermore, D.M.; Hawkey, P.M. CTX-M: Changing the face of ESBLs in the UK. J. Antimicrob. Chemother. 2005, 56, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, I.; Willemsen, I.; Rijnsburger, M.; Eustace, A.; Xu, L.; Hawkey, P.; Heck, M.; Savelkoul, P.; Vandenbroucke-Grauls, C.; van der Zwaluw, K.; et al. Extended-spectrum beta-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg. Infect. Dis. 2011, 17, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Geser, N.; Stephan, R.; Hachler, H. Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res. 2012, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Nordmann, P.; Ducroz, S.; Boulouis, H.J.; Arne, P.; Millemann, Y. Extended-spectrum beta-lactamase CTX-M-15-producing Klebsiella pneumoniae of sequence type ST274 in companion animals. Antimicrob. Agents Chemother. 2013, 57, 2372–2375. [Google Scholar] [CrossRef] [Green Version]
- Gulhan, T.; Aksakal, A.; Ekin, I.S.; Savasan, S.; Boynukara, B. Virulence Factors of Enterococcus faeciumandEnterococcus faecalisStrains Isolated from Humans and Pets. Turk. J. Vet. Anim. Sci. 2006, 30, 477–482. [Google Scholar]
- Toth, I.; Herault, F.; Beutin, L.; Oswald, E. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: Establishment of the existence of a new cdt variant (Type IV). J. Clin. Microbiol. 2003, 41, 4285–4291. [Google Scholar] [CrossRef] [Green Version]
- Feria, C.; Machado, J.; Correia, J.D.; Goncalves, J.; Gaastra, W. Virulence genes and P fimbriae PapA subunit diversity in canine and feline uropathogenic Escherichia coli. Vet. Microbiol 2001, 82, 81–89. [Google Scholar] [CrossRef]
- Tramuta, C.; Nucera, D.; Robino, P.; Salvarani, S.; Nebbia, P. Antibiotic Resistance Profiles in Relation to Virulence Factors and Phylogenetic Groups of Uropathogenic Escherichia coli Isolated from Dogs and Cats. In Veterinary Science: Current Aspects in Biology, Animal Pathology, Clinic and Food Hygiene; Pugliese, A., Gaiti, A., Boiti, C., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2012; pp. 51–55. [Google Scholar] [CrossRef]
- Blum, G.; Falbo, V.; Caprioli, A.; Hacker, J. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and alpha-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol. Lett. 1995, 126, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacker, J.; Kaper, J.B. The Concept of Pathogenicity Islands. In Pathogenicity Islands and Other Mobile Virulence Elements; ASM Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Usein, C.R.; Damian, M.; Tatu-Chitoiu, D.; Capusa, C.; Fagaras, R.; Mircescu, G. Comparison of genomic profiles of Escherichia coli isolates from urinary tract infections. Roum. Arch. Microbiol. Immunol. 2003, 62, 137–154. [Google Scholar] [PubMed]
- Cattoir, V.; Leclercq, R. Twenty-five years of shared life with vancomycin-resistant enterococci: Is it time to divorce? J. Antimicrob. Chemother. 2013, 68, 731–742. [Google Scholar] [CrossRef]
- Dubin, K.; Pamer, E.G. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol. Spectr. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Herrero, I.A.; Fernandez-Garayzabal, J.F.; Moreno, M.A.; Dominguez, L. Dogs should be included in surveillance programs for vancomycin-resistant enterococci. J. Clin. Microbiol. 2004, 42, 1384–1385. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, Y.; Ito, C.; Kawashima, A.; Ishii, M.; Yamashiro, S.; Harada, K.; Ochi, H.; Sawada, T. Identification and antimicrobial susceptibility of enterococci isolated from dogs and cats subjected to differing antibiotic pressures. J. Vet. Med. Sci. 2013, 75, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 1434. [Google Scholar] [CrossRef] [Green Version]
- Miele, A.; Bandera, M.; Goldstein, B.P. Use of primers selective for vancomycin resistance genes to determine van genotype in enterococci and to study gene organization in VanA isolates. Antimicrob. Agents Chemother. 1995, 39, 1772–1778. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019; Volume 39. [Google Scholar]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: http://www.eucast.org/mic_distributions_and_ecoffs/ (accessed on 10 March 2020).
- Perez-Perez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Jeon, S.; Rhie, H.; Lee, B.; Park, M.; Lee, H.; Lee, J.; Kim, S. Rapid Detection of Extended Spectrum beta-Lactamase (ESBL) for Enterobacteriaceae by use of a Multiplex PCR-based Method. Infect. Chemother. 2009, 41, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Eaton, T.J.; Gasson, M.J. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Bhat, G.K.; Shenoy, S. Virulence factors and drug resistance in Escherichia coli isolated from extraintestinal infections. Indian J. Med. Microbiol. 2007, 25, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Derakhshandeh, A.; Eraghi, V.; Boroojeni, A.M.; Niaki, M.A.; Zare, S.; Naziri, Z. Virulence factors, antibiotic resistance genes and genetic relatedness of commensal Escherichia coli isolates from dogs and their owners. Microb. Pathog. 2018, 116, 241–245. [Google Scholar] [CrossRef]
- Le Bouguenec, C.; Archambaud, M.; Labigne, A. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J. Clin. Microbiol. 1992, 30, 1189–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pass, M.A.; Odedra, R.; Batt, R.M. Multiplex PCRs for identification of Escherichia coli virulence genes. J. Clin. Microbiol. 2000, 38, 2001–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazono, H.; Takeda, Y.; Yoshida, O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef]
- Moulin-Schouleur, M.; Schouler, C.; Tailliez, P.; Kao, M.R.; Bree, A.; Germon, P.; Oswald, E.; Mainil, J.; Blanco, M.; Blanco, J. Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J. Clin. Microbiol. 2006, 44, 3484–3492. [Google Scholar] [CrossRef] [Green Version]
- de Jong, A.; Simjee, S.; Rose, M.; Moyaert, H.; El Garch, F.; Youala, M.; Group, E.S. Antimicrobial resistance monitoring in commensal enterococci from healthy cattle, pigs and chickens across Europe during 2004-14 (EASSA Study). J. Antimicrob. Chemother. 2019, 74, 921–930. [Google Scholar] [CrossRef] [PubMed]
Enterococcusspecies | Humans (n = 80) | Cats (72) | Dogs (48) |
---|---|---|---|
E. faecium | 68 (80) | 52 (72.2) | 24 (50) |
E. faecalis | 12 (1.5) | 20 (27.7) | 24 (50) |
Enterobacteriaceae species | Humans (n = 110) | Cats (55) | Dogs (35) |
E. coli | 103 (93.6) | 53 (96.3) | 25 (71.4) |
C. freundii | 4 (3.8) | 2 (36.3) | 10 (28.5) |
K. pneumoniae | 3 (2.7) | 0 | 0 |
Antibiotic | Humans | Cats | Dogs | ||||||
---|---|---|---|---|---|---|---|---|---|
E. faecium (n = 68) | E. faecalis (n = 12) | Total (n = 80) | E. faecium (n = 52) | E. faecalis (n = 24) | Total (n = 72) | E. faecium (n = 24) | E. faecalis (n = 24) | Total (n = 48) | |
Ampicillin | 11.7 | 33.3 | 18.5 | 28.8 | 62.5 | 41.6 | 25 | 12.5 | 18.7 |
Amoxicillin/clavulanate | 11.7 | 25 | 17.5 | 38.4 | 75 | 52.8 | 16.7 | 25 | 12.5 |
Streptomycin | 5.8 | 25 | 8.7 | 1.9 | 4.1 | 2.8 | 0 | 0 | 0 |
Erythromycin | 10.3 | 16.7 | 11.2 | 20 | 20.8 | 38.9 | 25 | 25 | 25 |
Tetracycline | 13.2 | 25 | 15 | 33.3 | 33.3 | 23.6 | 12.5 | 0 | 6.2 |
Ciprofloxacin | 25.5 | 25 | 25 | 41.7 | 41.7 | 62.5 | 12.5 | 0 | 6.2 |
Teicoplanin | 1.4 | 0 | 1.2 | 19.2 | 20.8 | 20.8 | 8.3 | 0 | 4.2 |
Vancomycin | 0 | 0 | 0 | 21.1 | 25 | 23.6 | 12.5 | 0 | 6.2 |
Tigecycline | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Antibiotic | Humans | Cats | Dogs | ||||||
---|---|---|---|---|---|---|---|---|---|
E. coli (n = 103) | C. freundii (n = 4) | K. pneumoniae (n = 3) | E. coli (n = 53) | C. freundii (n = 2) | K. pneumoniae (n = 0) | E. coli (n = 35) | C. freundii (n = 10) | K. pneumoniae (n = 0) | |
Ampicillin | 79.7 | 100 | 100 | 86.7 | 50 | 0 | 85.7 | 100 | 0 |
Amoxicillin/clavulanate | 77.6 | 100 | 100 | 86.7 | 50 | 0 | 85.7 | 100 | 0 |
Cefotaxime | 32 | 75 | 100 | 75.4 | 100 | 0 | 80 | 50 | 0 |
Ceftazidime | 27.2 | 75 | 100 | 66 | 50 | 0 | 71.4 | 50 | 0 |
Cefepime | 24.2 | 50 | 50 | 60.3 | 25 | 0 | 68.6 | 50 | 0 |
Tetracycline | 9.7 | 0 | 0 | 52.8 | 0 | 0 | 0 | 0 | 0 |
Ciprofloxacin | 19.4 | 0 | 0 | 28.3 | 0 | 0 | 0 | 0 | 0 |
Imipenem | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Meropenem | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Source | Humans | Cats | Dogs | ||||||
---|---|---|---|---|---|---|---|---|---|
N°. of Isolate a | E. coli (n = 103) | C. freundii (n = 4) | K. pneumoniae (n = 3) | E. coli (n = 53) | C. freundii (n = 2) | K. pneumoniae (n = 0) | E. coli (n = 25) | C. freundii (n = 10) | K. pneumoniae (n = 0) |
Penicillinases b | |||||||||
blaTEM-1 | 14.5 (15) | 50 (2) | 33.3 (1) | 60 (30) | 50 (1) | 0 | 40 (10) | 40 (4) | 0 |
ESBL b | 0 | 0 | |||||||
blaTEM-92 | 19.4 (20) | 0 | 0 | 0 | 0 | ||||
blaTEM-20 | 3.8 (8) | 0 | 0 | 0 | 0 | ||||
blaTEM-52 | 9.7 (10) | 0 | 0 | 3.7 (2) | 0 | 0 | 20 (5) | 0 | 0 |
blaCTX-M-1 | 17.4 (18) | 0 | 66.7 (2) | 22.5 (8) | 0 | 0 | 36 (9) | 0 | 0 |
blaCTX-M-14 | 0 | 0 | 0 | 0 | 0 | 0 | 8 (2) | 0 | 0 |
blaCTX-M-15 | 29.1 (30) | 50 (2) | 0 | 20.7 (11) | 50 (1) | 0 | 32 (8) | 60(6) | 0 |
AmpC b | 0 | 0 | 0 | ||||||
blaMIR-1 | 19.4 (2) | 0 | 0 | 0 | 0 | ||||
blaCMY-2 | 0 | 0 | 0 | 3.7 (2) | 4 (1) | 0 | 0 |
Virulence Factors/Genes | Human n = 80(%) | Cat n = 72 (%) | Dog n = 48 (%) | Total n = 200 (%) |
---|---|---|---|---|
Gelatinase | 25 (31.2) | 16 (22.2) | 8 (16.6) | 49 (24.5) |
* AS | 9 (11.2) | 2 (2.7) | 0 | 11 (5.5) |
Cytolysin | 5(6.2) | 0 | 0 | 5 (2.5) |
gelE | 27 (33.7) | 10 (13.9) | 2 (4.1) | 39 (19.5) |
cylA | 3 (3.7) | 0 | 0 | 3 (1.5) |
cylB | 3 (3.7) | 0 | 0 | 3 (1.5) |
cylM | 6 (7.5) | 3 (4.1) | 1 (2) | 10 (5) |
agg | 8 (10) | 3 (4.1) | 0 | 11 (5.5) |
esp | 10 (12.5) | 0 | 0 | 10 (20) |
efaAfs | 21 (26.2) | 9 (12.5) | 8 (16.6) | 38 (19) |
efaAfm | 12 (15) | 8 (11.1) | 8 (16.6) | 28 (14) |
Virulence Factors/Genes | Humans | Cats | Dogs | Total n = 200 (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E. coli (n = 103) | C. freundii (n = 4) | K. pneumoniae (n = 3) | E. coli (n = 53) | C. freundii (n = 2) | K. pneumoniae (n = 0) | E. coli (n = 35) | C. freudii (n = 10) | K. pneumoniae (n = 0) | ||
Gelatinase | 25 (27.2) | 0 | 0 | 16 (30.2) | 0 | 0 | 8 (32) | 0 | 0 | 49 (24.5) |
Cytolysin | (8.7) | 0 | 0 | 2 (3.7) | 0 | 0 | 0 | 0 | 0 | 11 (5.5) |
afa | 1 (0.9) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (0.5) |
cdt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
cnf1 | 12 (11.6) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 (6) | |
hlyA | 6 (5.8) | 0 | 0 | 2 (3.7) | 0 | 0 | 3 (12) | 0 | 0 | 11 (5.5) |
iutA | 6 (5.8) | 0 | 0 | 4 (7.5) | 0 | 0 | 8 (32) | 0 | 0 | 18 (9) |
papC | 15 (14.5) | 2 (50) | 1 (33.3) | 10 (18.8) | 0 | 0 | 5 (20) | 0 | 0 | 33 (16.5) |
sfa | 10 (9.7) | 0 | 0 | 2 (3.7) | 0 | 0 | 8 (32) | 0 | 0 | 20 (10) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iseppi, R.; Di Cerbo, A.; Messi, P.; Sabia, C. Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets. Antibiotics 2020, 9, 152. https://doi.org/10.3390/antibiotics9040152
Iseppi R, Di Cerbo A, Messi P, Sabia C. Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets. Antibiotics. 2020; 9(4):152. https://doi.org/10.3390/antibiotics9040152
Chicago/Turabian StyleIseppi, Ramona, Alessandro Di Cerbo, Patrizia Messi, and Carla Sabia. 2020. "Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets" Antibiotics 9, no. 4: 152. https://doi.org/10.3390/antibiotics9040152
APA StyleIseppi, R., Di Cerbo, A., Messi, P., & Sabia, C. (2020). Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets. Antibiotics, 9(4), 152. https://doi.org/10.3390/antibiotics9040152