Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms
Abstract
:1. Introduction
2. Results
2.1. ARGs and MGEs in the Caged Layer Shed in Farm L
2.1.1. Number of ARGs and MGEs
2.1.2. Abundance of ARGs and MGEs
2.1.3. Microbiota Analysis of Manure Belt swabs of Farm L
2.2. ARGs and MGEs in the Caged Broiler Breeder Sheds in Farm B
2.2.1. Number and Abundance of ARGs and MGEs
2.2.2. Similarity of ARG and MGE Profiles between Sheds and Farms
3. Discussion
4. Materials and Methods
4.1. Study Farms and Chickens
4.2. Sampling
4.3. DNA Extraction
4.4. HT-qPCR Array for Detection and Quantification of ARGs and MGEs
4.5. Bacterial 16S rRNA Sequencing and Bioinformatic Analyses
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [Green Version]
- APVMA. Antibiotic Resistance in Animals. Available online: https://apvma.gov.au/our-science/14596/publications/27326 (accessed on 27 June 2018).
- Obeng, A.; Rickard, H.; Sexton, M.; Pang, Y.; Peng, H.; Barton, M. Antimicrobial susceptibilities and resistance genes in Campylobacter strains isolated from poultry and pigs in Australia. J. Appl. Microbiol. 2012, 113, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Obeng, A.S.; Rickard, H.; Ndi, O.; Sexton, M.; Barton, M. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Vet. Microbiol. 2012, 154, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Obeng, A.S.; Rickard, H.; Ndi, O.; Sexton, M.; Barton, M. Comparison of antimicrobial resistance patterns in enterococci from intensive and free range chickens in Australia. Avian Pathol. 2013, 42, 45–54. [Google Scholar] [CrossRef]
- Miflin, J.K.; Templeton, J.M.; Blackall, P. Antibiotic resistance in Campylobacter jejuni and Campylobacter coli isolated from poultry in the South-East Queensland region. J. Antimicrob. Chemother. 2007, 59, 775–778. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Carrique-Mas, J.; Davies, R. Sensitivity of environmental sampling methods for detecting Salmonella Enteritidis in commercial laying flocks relative to the within-flock prevalence. Epidemiol. Infect. 2010, 138, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Crabb, H.K.; Allen, J.L.; Devlin, J.M.; Wilks, C.R.; Gilkerson, J.R. Spatial distribution of Salmonella enterica in poultry shed environments observed by intensive longitudinal environmental sampling. Appl. Environ. Microbiol. 2019, 19, e00333-19. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.A.; Stedtfeld, R.D.; Wang, Q.; Cole, J.R.; Hashsham, S.A.; Looft, T.; Zhu, Y.G.; Tiedje, J.M. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture. mBio 2016, 7, e02214–e02215. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yang, Y.; Ma, L.; Ju, F.; Guo, F.; Tiedje, J.M.; Zhang, T. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 2015, 9, 2490–2502. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Zhang, M.; Zhang, S.; Yu, X. Can chlorination co-select antibiotic-resistance genes? Chemosphere 2016, 156, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Looft, T.; Johnson, T.A.; Allen, H.K.; Bayles, D.O.; Alt, D.P.; Stedtfeld, R.D.; Sul, W.J.; Stedtfeld, T.M.; Chai, B.; Cole, J.R. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 2012, 109, 1691–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Stedtfeld, R.D.; Hedman, H.; Eisenberg, J.N.; Trueba, G.; Yin, D.; Tiedje, J.M.; Zhang, L. Antibiotic resistome associated with small-scale poultry production in rural Ecuador. Environ. Sci. Technol. 2018, 52, 8165–8172. [Google Scholar] [CrossRef]
- He, L.Y.; Liu, Y.S.; Su, H.C.; Zhao, J.L.; Liu, S.S.; Chen, J.; Liu, W.R.; Ying, G.G. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: Identification of indicator ARGs and correlations with environmental variables. Environ. Sci. Technol. 2014, 48, 13120–13129. [Google Scholar] [CrossRef]
- Seville, L.A.; Patterson, A.J.; Scott, K.P.; Mullany, P.; Quail, M.A.; Parkhill, J.; Ready, D.; Wilson, M.; Spratt, D.; Roberts, A.P. Distribution of tetracycline and erythromycin resistance genes among human oral and fecal metagenomic DNA. Microb. Drug Resist. 2009, 15, 159–166. [Google Scholar] [CrossRef]
- Bean, D.C.; Livermore, D.M.; Hall, L.M. Plasmids imparting sulfonamide resistance in Escherichia coli: Implications for persistence. Antimicrob. Agents Chemother. 2009, 53, 1088–1093. [Google Scholar] [CrossRef] [Green Version]
- Vinué, L.; Sáenz, Y.; Rojo-Bezares, B.; Olarte, I.; Undabeitia, E.; Somalo, S.; Zarazaga, M.; Torres, C. Genetic environment of sul genes and characterisation of integrons in Escherichia coli isolates of blood origin in a Spanish hospital. Int. J. Antimicrob. Agents 2010, 35, 492–496. [Google Scholar] [CrossRef]
- Yau, S.; Liu, X.; Djordjevic, S.P.; Hall, R.M. RSF1010-like plasmids in Australian Salmonella enterica serovar Typhimurium and origin of their sul2-strA-strB antibiotic resistance gene cluster. Microb. Drug Resist. 2010, 16, 249–252. [Google Scholar] [CrossRef]
- Okubo, T.; Ae, R.; Noda, J.; Iizuka, Y.; Usui, M.; Tamura, Y. Detection of the sul2–strA–strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. J. Glob. Antimicrob Resist. 2019, 17, 72–78. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiang, Y.; Zhou, W.; Chen, J.; Li, K.; Yang, H. Microbial community mapping in intestinal tract of broiler chicken. Poult. Sci. 2017, 96, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sanchez, S.; Hofacre, C.; Maurer, J.J.; Harmon, B.G.; Lee, M.D. Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl. Environ. Microbiol. 2003, 69, 901–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Lilburn, M.; Yu, Z. Intestinal microbiota of broiler chickens as affected by litter management regimens. Front. Microbiol. 2016, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.; Chen, H.; Su, C.; Yan, S. Abundance and persistence of antibiotic resistance genes in livestock farms: A comprehensive investigation in eastern China. Environ. Int. 2013, 61, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012, 235–236, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, M.; Feng, F.; Zhang, J.; Sui, Q.; Tong, J.; Wei, Y.; Wei, D. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion. Bioresour. Technol. 2017, 238, 57–69. [Google Scholar] [CrossRef]
- Roberts, M.C.; Schwarz, S.; Aarts, H.J. Erratum: Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2012, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Qu, A.; Brulc, J.M.; Wilson, M.K.; Law, B.F.; Theoret, J.R.; Joens, L.A.; Konkel, M.E.; Angly, F.; Dinsdale, E.A.; Edwards, R.A. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS ONE 2008, 3, e2945. [Google Scholar] [CrossRef] [Green Version]
- Agersø, Y.; Jensen, L.B.; Givskov, M.; Roberts, M.C. The identification of a tetracycline resistance gene tet(M), on a Tn 916-like transposon, in the Bacillus cereus group. FEMS Microbiol. Lett. 2002, 214, 251–256. [Google Scholar] [CrossRef]
- Agersø, Y.; Pedersen, A.G.; Aarestrup, F.M. Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. J. Antimicrob. Chemother. 2006, 57, 832–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [Green Version]
- De Leener, E.; Martel, A.; Decostere, A.; Haesebrouck, F. Distribution of the erm(B) gene, tetracycline resistance genes, and Tn1545-like transposons in macrolide-and lincosamide-resistant enterococci from pigs and humans. Microb. Drug Resist. 2004, 10, 341–345. [Google Scholar] [CrossRef]
- De Vries, L.E.; Christensen, H.; Skov, R.L.; Aarestrup, F.M.; Agersø, Y. Diversity of the tetracycline resistance gene tet(M) and identification of Tn 916-and Tn 5801-like (Tn 6014) transposons in Staphylococcus aureus from humans and animals. J. Antimicrob. Chemother. 2009, 64, 490–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochetti, I.; Tili, E.; Vecchi, M.; Manzin, A.; Mingoia, M.; Varaldo, P.E.; Montanari, M.P. New Tn 916-related elements causing erm(B)-mediated erythromycin resistance in tetracycline-susceptible pneumococci. J. Antimicrob. Chemother. 2007, 60, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Vlamakis, H.; Shoemaker, N.; Salyers, A.A. A new Bacteroides conjugative transposon that carries an ermB gene. Appl. Environ. Microbiol. 2003, 69, 6455–6463. [Google Scholar] [CrossRef] [Green Version]
- Okitsu, N.; Kaieda, S.; Yano, H.; Nakano, R.; Hosaka, Y.; Okamoto, R.; Kobayashi, T.; Inoue, M. Characterization of ermB gene transposition by Tn1545 and Tn917 in macrolide-resistant Streptococcus pneumoniae isolates. J. Clin. Microbiol. 2005, 43, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.H.; Qiao, M.; Su, J.Q.; Chen, Z.; Zhou, X.; Zhu, Y.G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 2014, 48, 9079–9085. [Google Scholar] [CrossRef]
- Muller, P.Y.; Janovjak, H.; Miserez, A.R.; Dobbie, Z. Erratum. BioTechniques 2002, 33, 514. [Google Scholar]
- Muller, P.Y.; Janovjak, H.; Miserez, A.R.; Dobbie, Z. Processing of gene expression data generated by quantitative real-time RT-PCR. BioTechniques 2002, 32, 1372–1379. [Google Scholar]
- Thijs, S.; Op De Beeck, M.; Beckers, B.; Truyens, S.; Stevens, V.; Van Hamme, J.D.; Weyens, N.; Vangronsveld, J. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 2017, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lee, C.; Kim, J.; Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005, 89, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 1–17. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995, 57, 289–300. [Google Scholar] [CrossRef]
Gene | Relative Abundance | ||
---|---|---|---|
Min | Max | Median | |
aadA | 6.5 × 10−3 | 2.9 × 10−2 | 1.2 × 10−2 |
aadA1 | 3.4 × 10−3 | 1.9 × 10−2 | 6.0 × 10−3 |
aadA2 | 1.0 × 10−3 | 3.7 × 10−3 | 2.1 × 10−3 |
strB | 1.2 × 10−2 | 4.0 × 10−2 | 2.3 × 10−2 |
sul2 | 1.3 × 10−2 | 4.5 × 10−2 | 2.5 × 10−2 |
tetK | 1.9 × 10−3 | 1.3 × 10−2 | 7.5 × 10−3 |
tetM | 1.1 × 10−2 | 3.2 × 10−2 | 2.3 × 10−2 |
tetW | 2.4 × 10−3 | 4.6 × 10−2 | 4.9 × 10−3 |
tetX | 6.7 × 10−3 | 3.7 × 10−2 | 1.1 × 10−2 |
Gene | Relative Abundance | ||
---|---|---|---|
Min | Max | Median | |
aadA | 6.4 × 10−4 | 6.7 × 10−2 | 7.2 × 10−3 |
aadA2 | 5.0 × 10−4 | 3.8 × 10−2 | 5.6 × 10−3 |
strB | 7.0 × 10−4 | 2.1 × 10−1 | 1.3 × 10−2 |
ermB | 1.4 × 10−3 | 3.0 × 10−2 | 6.3 × 10−3 |
sul2 | 1.5 × 10−4 | 3.4 × 10−1 | 8.0 × 10−3 |
intl1 | 6.8 × 10−4 | 7.9 × 10−2 | 1.8 × 10−2 |
qacE∆ | 1.3 × 10−3 | 5.4 × 10−2 | 1.1 × 10−2 |
tetL | 1.0 × 10−3 | 5.5 × 10−2 | 1.2 × 10−2 |
tetM | 1.8 × 10−3 | 3.0 × 10−2 | 9.2 × 10−3 |
tetX | 2.2 × 10−4 | 3.8 × 10−2 | 7.7 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Dyall-Smith, M.; Marenda, M.; Hu, H.-W.; Browning, G.; Billman-Jacobe, H. Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms. Antibiotics 2020, 9, 120. https://doi.org/10.3390/antibiotics9030120
Liu Y, Dyall-Smith M, Marenda M, Hu H-W, Browning G, Billman-Jacobe H. Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms. Antibiotics. 2020; 9(3):120. https://doi.org/10.3390/antibiotics9030120
Chicago/Turabian StyleLiu, Yuhong, Michael Dyall-Smith, Marc Marenda, Hang-Wei Hu, Glenn Browning, and Helen Billman-Jacobe. 2020. "Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms" Antibiotics 9, no. 3: 120. https://doi.org/10.3390/antibiotics9030120
APA StyleLiu, Y., Dyall-Smith, M., Marenda, M., Hu, H. -W., Browning, G., & Billman-Jacobe, H. (2020). Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms. Antibiotics, 9(3), 120. https://doi.org/10.3390/antibiotics9030120