Antibiotic Resistance in Marine Microbial Communities Proximal to a Florida Sewage Outfall System
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Sites and Collection
2.2. Sample Storage and Shipping
2.3. Antibiotic Resistance Presence/Absence Polymerase Chain Reaction Assays
3. Results
3.1. Wet Season
3.2. Dry Season
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Griffin, D.W.; Benzel, W.M.; Fisher, S.C.; Focazio, M.J.; Iwanowicz, L.R.; Loftin, K.A.; Reilly, T.J.; Jones, D.K. The presence of antibiotic resistance genes in coastal soil and sediment samples from the eastern seaboard of the United States. Environ. Monit. Assess. 2019, 191, 300. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USCDC. Antibiotic Resistance Threats in the United Stated, 2013. Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed on 22 March 2017).
- Taylor, J.; Hafner, M.; Yerushalmi, E.; Smith, R.; Bellasio, J.; Vardavas, R.; Bienkowska-Gibbs, T.; Rubin, J. Estimating the Economic Cost of Antimicrobial Resistance; Model and Results; The Wellcome Trust: London, UK, 2014; pp. 1–113. Available online: http://www.rand.org/content/dam/rand/pubs/research_reports/RR900/RR911/RAND_RR911.pdf (accesed on 22 March 2017).
- O’Neill, J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. In Review on Antimicrobial Resistance; The Wellcome Trust: London, UK, 2014; pp. 1–20. Available online: https://amr-review.org/Publications.html (accessed on 22 March 2017).
- Gaw, S.; Thomas, K.V.; Hutchinson, T.H. Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philos. Trans. Rolay Soc. Lond B Biol. Sci. 2014, 369, 20130572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.R.; McIlroy, S.E.; Archana, A.; Baker, D.M.; Panagiotou, G. A pollution gradient contributes to the taxonomic, functional, and resistome diversity of microbial communities in marine sediments. Microbiome 2019, 7, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, S.; Xu, W.; Zhang, R.; Tang, J.; Chen, Y.; Zhang, G. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environ. Pollut. 2011, 159, 2913–2920. [Google Scholar] [CrossRef] [PubMed]
- Kotlarska, E.; Luczkiewicz, A.; Pisowacka, M.; Burzynski, A. Antibiotic resistance and prevalence of class 1 and 2 integrons in Escherichia coli isolated from two wastewater treatment plants, and their receiving waters (Gulf of Gdansk, Baltic Sea, Poland). Environ. Sci. Pollut. Res. Int. 2015, 22, 2018–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, M.D. Antibiotic resistance among coliform and fecal coliform bacteria isolated from sewage, seawater, and marine shellfish. Antimicrob. Agents Chemother. 1976, 9, 879–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantilla-Calderon, D.; Plewa, M.J.; Michoud, G.; Fodelianakis, S.; Daffonchio, D.; Hong, P.Y. Water Disinfection Byproducts Increase Natural Transformation Rates of Environmental DNA in Acinetobacter baylyi ADP1. Environ. Sci. Technol. 2019, 53, 6520–6528. [Google Scholar] [CrossRef] [Green Version]
- Di Cesare, A.; Luna, G.M.; Vignaroli, C.; Pasquaroli, S.; Tota, S.; Paroncini, P.; Biavasco, F. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments. PLoS ONE 2013, 8, e62838. [Google Scholar] [CrossRef] [Green Version]
- Di Cesare, A.; Vignaroli, C.; Luna, G.M.; Pasquaroli, S.; Biavasco, F. Antibiotic-resistant enterococci in seawater and sediments from a coastal fish farm. Microb. Drug Resist. 2012, 18, 502–509. [Google Scholar] [CrossRef]
- Koopman, B.; Heaney, J.P.; Cakir, F.Y.; Rembold, M.; Indeglia, P.; Kini, G. Ocean Outfall Study; Florida Department of Environmental Protection: Tallahassee, FL, USA, 2006; pp. 1–241.
- U.S. Geological Survey (USGS). Southeast Florida and Florida Keys antibiotic Resistance Study; U.S. Geological Survey data release; U.S. Geological Survey: Reston, VA, USA, 2020. [CrossRef]
- Singh, P.; Mustapha, A. Multiplex TaqMan (R) detection of pathogenic and multi-drug resistant Salmonella. Int. J. Food Microbiol. 2013, 166, 213–218. [Google Scholar] [CrossRef]
- Knapp, C.W.; Dolfing, J.; Ehlert, P.A.I.; Graham, D.W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 2010, 44, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Bockelmann, U.; Dorries, H.H.; Ayuso-Gabella, M.N.; de Marcay, M.S.; Tandoi, V.; Levantesi, C.; Masciopinto, C.; Van Houtte, E.; Szewzyk, U.; Wintgens, T.; et al. Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl. Env. Microb. 2009, 75, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handel, N.; Schuurmans, J.M.; Brul, S.; ter Kuile, B.H. Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli. Antimicrob. Agents Chemother. 2013, 57, 3752–3762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, M.; Austin, S. Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect. Immun. 2011, 79, 2502–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Target | Upstream Primer | Downstream Primer | Probe | Reference |
---|---|---|---|---|
aadA2 | CAGCCAYGATCGACATTGATCT | CCAAGGCAACGCTATGTTCTC | CTGCTTACAAAAGC | [16] |
ampC | GGGAATGCTGGATGCACAA | CATGACCCAGTTCGCCATATC | CCTATGGCGTGAAAACCAACGTGCA | [17] |
blaPSE | GATTTGGTGCTCGGAGTATT | CATTGAAGCCTGTGTTTGAG | CTTGATGCTCACTCCA | [16] |
blaSHV | AACAGCTGGAGCGAAAGATCCA | TGTTTTTCGCTGACCGGCGAG | TCCACCAGATCCTGCTGGCGATAG | [18] |
ermB | GGATTCTACAAGCGTACCTTGGA | GCTGGCAGCTTAAGCAATTGCT | CACTAGGGTTGCTCTTGCACACTCAAGTC | [18] |
floR | GGCAGGCGATATTCATTACT | CGAGAAGAAGACGAAGAAGG | CTAAAGCCGACAGTGTA | [16] |
mecA | CATTGATCGCAACGTTCAATTTAAT | TGGTCTTTCTGCATTCCTGGA | CTATGATCCCAATCTAACTTCCACATACC | [18] |
tetB | ACACTCAGTATTCCAAGCCTTTG | GATAGACATCACTCCCTGTAATGC | AAAGCGATCCCACCACCAGCCAAT | [17] |
tetG | CGGTACTTCTGGCTTCTCTT | GAATCGGCAATGGTTGAG | CAGGAGCCGCAGTCGATTACACG | [16] |
tetL | GGTTTTGAACGTCTCATTACCTGAT | CCAATGGAAAAGGTTAACATAAAGG | CCACCTGCGAGTACAAACTGGGTGAAC | [17] |
tetM | GGTTTCTCTTGGATACTTAAATCAATCR | CCAACCATAYAATCCTTGTTCRC | ATGCAGTTATGGARGGGATACGCTATGGY | [17] |
tetO | AAGAAAACAGGAGATTCCAAAACG | CGAGTCCCCAGATTGTTTTTAGC | ACGTTATTTCCCGTTTATCACGG | [17] |
tetQ | AGGTGCTGAACCTTGTTTGATTC | GGCCGGACGGAGGATTT | TCGCATCAGCATCCCGCTC | [17] |
tetW | GCAGAGCGTGGTTCAGTCT | GACACCGTCTGCTTGATGATAAT | TTCGGGATAAGCTCTCCGCCGA | [17] |
vanA | CTGTGAGGTCGGTTGTGCG | TTTGGTCCACCTCGCCA | CAACTAACGCGGCACTGTTTCCCAAT | [17] |
Antibiotic Resistance Gene | Examples of Affected Antibiotics/Drugs |
---|---|
aadA2 | Streptomycin, spectinomycin |
ampC | beta-lactams (ampicillin, penicillin, etc.) |
blaPSE | beta-lactams |
blaSHV | beta-lactams |
ermB | Macrolides (erythromycin, etc.), lincosamides (lincomycin, etc.), streptogramins (synercid, etc.) |
floR | Florfenicol, chloramphenicol |
mecA | Methicillin |
tetB | Tetracycline |
tetG | Tetracycline |
tetL | Tetracycline |
tetM | Tetracycline |
tetO | Tetracycline |
tetQ | Tetracycline |
tetW | Tetracycline |
vanA | Vancomycin |
Sample Type | Number of Samples | Total Number of Antibiotic Resistance Gene Detections | Antibiotic Resistance Genes Detected |
---|---|---|---|
Wet Season samples | |||
Wastewater treatment plant | 3 | 11 | tetB, tetQ, ampC, ermB, vanA |
Outfall boil | 3 | 6 | tetB, tetQ, tetW, ermB |
Sediment | 32 | 77 | tetO, tetQ, tetW, ampC, ermB, vanA, mecA, aadA2 |
Dry Season samples | |||
Wastewater treatment plant | 7 | 46 | tetB, tetM, tetO, tetQ, tetW, ampC, ermB, vanA, mecA, blaSHV |
Outfall boil | 3 | 22 | tetB, tetO, tetQ, tetW, ampC, ermB, mecA, blaSHV |
Sediment | 32 | 11 | tetW, ampC, ermB, vanA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffin, D.W.; Banks, K.; Gregg, K.; Shedler, S.; Walker, B.K. Antibiotic Resistance in Marine Microbial Communities Proximal to a Florida Sewage Outfall System. Antibiotics 2020, 9, 118. https://doi.org/10.3390/antibiotics9030118
Griffin DW, Banks K, Gregg K, Shedler S, Walker BK. Antibiotic Resistance in Marine Microbial Communities Proximal to a Florida Sewage Outfall System. Antibiotics. 2020; 9(3):118. https://doi.org/10.3390/antibiotics9030118
Chicago/Turabian StyleGriffin, Dale W., Kenneth Banks, Kurtis Gregg, Sarah Shedler, and Brian K. Walker. 2020. "Antibiotic Resistance in Marine Microbial Communities Proximal to a Florida Sewage Outfall System" Antibiotics 9, no. 3: 118. https://doi.org/10.3390/antibiotics9030118
APA StyleGriffin, D. W., Banks, K., Gregg, K., Shedler, S., & Walker, B. K. (2020). Antibiotic Resistance in Marine Microbial Communities Proximal to a Florida Sewage Outfall System. Antibiotics, 9(3), 118. https://doi.org/10.3390/antibiotics9030118