Identification and Heterologous Expression of the Biosynthetic Gene Cluster Encoding the Lasso Peptide Humidimycin, a Caspofungin Activity Potentiator
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Analysis of Humidimycin Biosynthetic Gene Cluster
2.2. Cloning and Heterologous Expression of Humidimycin Biosynthetic Gene Cluster
2.3. Marfey’s Analysis of Humidimycin C-terminal Tryptophan
2.4. Genome Mining of Additional Humidimycin-like Biosynthetic Gene Clusters
3. Materials and Methods
3.1. Bacterial Strains and Plasmids
3.2. Growth and Culture Conditions
3.3. General Molecular Biology Techniques
3.4. Location and Analysis of Humidimycin Biosynthetic Gene Cluster
3.5. Gibson Assembly Cloning of Humidimycin Biosynthetic Gene Cluster
3.6. Intergeneric Conjugation
3.7. Heterologous Expression of Humidimycin Biosynthetic Gene Cluster and LC-ESI-TOF Analysis
3.8. Marfey’s Analysis of Tryptophan
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gomez-Escribano, J.P.; Bibb, M.J. Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: From genome mining to manipulation of biosynthetic pathways. J. Ind. Microbiol. Biot. 2014, 41, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Genilloud, O. Actinomycetes: Still a source of novel antibiotics. Nat. Prod. Rep. 2017, 34, 1203–1232. [Google Scholar] [CrossRef]
- Genilloud, O. Natural products discovery and potential for new antibiotics. Curr. Opin. Microbiol. 2019, 51, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Escribano, J.P.; Alt, S.; Bibb, M.J. Next generation sequencing of actinobacteria for the discovery of novel natural products. Mar. Drugs 2016, 14, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genilloud, O. Mining actinomycetes for novel antibiotics in the omics era: Are we ready to exploit this new paradigm? Antibiotics 2018, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [Green Version]
- Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; de Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; et al. Minimum Information about a Biosynthetic Gene cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef]
- Skinnider, M.A.; Merwin, N.J.; Johnston, C.W.; Magarvey, N.A. PRISM 3: Expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 2017, 45, W49–W54. [Google Scholar] [CrossRef] [Green Version]
- Poorinmohammad, N.; Bagheban-Shemirani, R.; Hamedi, J. Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie Leeuwenhoek 2019, 112, 1477–1499. [Google Scholar] [CrossRef]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef]
- Tan, S.; Moore, G.; Nodwell, J. Put a Bow on It: Knotted Antibiotics Take Center Stage. Antibiotics 2019, 8, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tietz, J.I.; Schwalen, C.J.; Patel, P.S.; Maxson, T.; Blair, P.M.; Tai, H.C.; Zakai, U.I.; Mitchell, D.A. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 2017, 13, 470–478. [Google Scholar] [CrossRef]
- Cheung-Lee, W.L.; Link, A.J. Genome mining for lasso peptides: Past, present, and future. J. Ind. Microbiol. Biot. 2019, 46, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef] [PubMed]
- Santos-Aberturas, J.; Chandra, G.; Frattaruolo, L.; Lacret, R.; Pham, T.H.; Vior, N.M.; Eyles, T.H.; Truman, A.W. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res. 2019, 47, 4624–4637. [Google Scholar] [CrossRef]
- Agrawal, P.; Khater, S.; Gupta, M.; Sain, N.; Mohanty, D. RiPPMiner: A bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res. 2017, 45, W80–W88. [Google Scholar] [CrossRef]
- Schwalen, C.J.; Mitchell, D. Discovery of Antibiotic Peptides from Novelty-Prioritized Natural Product Genome Mining. FASEB J. 2017, 31 (Suppl. 1), 939.8. [Google Scholar] [CrossRef]
- Burkhart, B.J.; Hudson, G.A.; Dunbar, K.L.; Mitchell, D.A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 2015, 11, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Fage, C.D.; Hegemann, J.D.; Mielcarek, A.; Yan, D.; Linne, U.; Marahiel, M.A. The B1 protein guides the biosynthesis of a lasso peptide. Sci. Rep. 2016, 6, 35604. [Google Scholar] [CrossRef] [Green Version]
- Sumida, T.; Dubiley, S.; Wilcox, B.; Severinov, K.; Tagami, S. Structural basis of leader peptide recognition in lasso peptide biosynthesis pathway. ACS Chem. Biol. 2019, 14, 1619–1627. [Google Scholar] [CrossRef]
- Hegemann, J.D.; Zimmermann, M.; Xie, X.; Marahiel, M.A. Lasso peptides: An intriguing class of bacterial natural products. Acc. Chem. Res. 2015, 48, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Valiante, V.; Monteiro, M.C.; Martín, J.; Altwasser, R.; El Aouad, N.; González, I.; Kniemeyer, O.; Mellado, E.; Palomo, S.; de Pedro, N.; et al. Hitting the caspofungin salvage pathway of human-pathogenic fungi with the novel lasso peptide humidimycin (MDN-0010). Antimicrob. Agents Chemother. 2015, 59, 5145–5153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helynck, G.; Dubertret, C.; Mayaux, J.F.; Leboul, J. Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite. J. Antibiot. (Tokyo) 1993, 46, 1756–1757. [Google Scholar] [CrossRef] [PubMed]
- Potterat, O.; Stephan, H.; Metzger, J.W.; Gnau, V.; Zähner, H.; Jung, G. Aborycin–A Tricyclic 21-Peptide Antibiotic Isolated from Streptomyces griseoflavus. Liebigs Annalen Chemie 1994, 1994, 741–743. [Google Scholar] [CrossRef]
- Tsunakawa, M.; Hu, S.L.; Hoshino, Y.; Detlefson, D.J.; Hill, S.E.; Furumai, T.; White, R.J.; Nishio, M.; Kawano, K.; Yamamoto, S.; et al. Siamycins I and II, new anti-HIV peptides: I. Fermentation, isolation, biological activity and initial characterization. J. Antibiot. (Tokyo) 1995, 48, 433–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.F.; Samanta, H.; Bechtold, C.M.; Deminie, C.A.; Patick, A.K.; Alam, M.; Riccardi, K.; Rose, R.E.; White, R.J.; Colonno, R.J. Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor. Antimicrob. Agents Chemother. 1996, 40, 133–1387. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Ludwig, K.C.; Müller, A.; Schneider, T.; Nodwell, J.R. The lasso peptide siamycin-I targets lipid II at the Gram-positive cell surface. ACS Chem. Biol. 2019, 14, 966–974. [Google Scholar] [CrossRef]
- Shao, M.; Ma, J.; Li, Q.; Ju, J. Identification of the Anti-Infective Aborycin Biosynthetic Gene Cluster from Deep-Sea-Derived Streptomyces sp. SCSIO ZS0098 Enables Production in a Heterologous Host. Mar. Drugs 2019, 17, 127. [Google Scholar] [CrossRef] [Green Version]
- Kaweewan, I.; Hemmi, H.; Komaki, H.; Harada, S.; Kodani, S. Isolation and structure determination of a new lasso peptide specialicin based on genome mining. Bioorg. Med. Chem. 2018, 26, 6050–6055. [Google Scholar] [CrossRef]
- Feng, Z.; Ogasawara, Y.; Nomura, S.; Dairi, T. Biosynthetic Gene Cluster of ad-Tryptophan-Containing Lasso Peptide, MS-271. ChemBioChem 2018, 19, 2045–2048. [Google Scholar] [CrossRef]
- Ogasawara, Y. New enzymes for peptide biosynthesis in microorganisms. Biosci. Biotechnol. Biochem. 2019, 83, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, Y.; Shigematsu, M.; Sato, S.; Kato, H.; Dairi, T. Involvement of Peptide Epimerization in Poly-γ-glutamic Acid Biosynthesis. Org. Lett. 2019, 21, 3972–3975. [Google Scholar] [CrossRef] [PubMed]
- Myronovskyi, M.; Luzhetskyy, A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat. Prod. Rep. 2019, 36, 1281–1294. [Google Scholar] [CrossRef] [PubMed]
- Bilyk, B.; Luzhetskyy, A. Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl. Microbiol. Biotechnol. 2014, 98, 5095–5104. [Google Scholar] [CrossRef]
- Constantine, K.L.; Friedrichs, M.S.; Detlefsen, D.; Nishio, M.; Tsunakawa, M.; Furumai, T.; Ohkuma, H.; Oki, T.; Hill, S.; Bruccoleri, R.E.; et al. High-resolution solution structure of siamycin II: Novel amphipathic character of a 21-residue peptide that inhibits HIV fusion. J. Biomol. NMR 1995, 5, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Flett, F.; Mersinias, V.; Smith, C.P. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 1997, 155, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, K.; Reynolds, K.A.; Kersten, R.D.; Ryan, K.S.; Gonzalez, D.J.; Nizet, V.; Dorrestein, P.C.; Moore, B.S. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Nat. Acad. Sci. USA 2014, 111, 1957–1962. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Escribano, J.P.; Bibb, M.J. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb. Biotechnol. 2011, 4, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Chater, K.F.; Wilde, L.C. Streptomyces albus G mutants defective in the SalGI restriction-modification system. J. Gen. Microbiol. 1980, 116, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; John Innes Foundation: Norwich, UK, 2000; Volume 291. [Google Scholar]
- Martin, J.; Crespo, G.; González-Menéndez, V.; Pérez-Moreno, G.; Sánchez-Carrasco, P.; Pérez-Victoria, I.; Ruiz-Pérez, L.M.; González-Pacanowska, D.; Vicente, F.; Genilloud, O.; et al. MDN-0104, an antiplasmodial betaine lipid from Heterospora chenopodii. J. Nat. Prod. 2014, 77, 2118–2123. [Google Scholar] [CrossRef]
Proteins from hum Cluster | Closest BLAST Homolog (Organism) Reference (% Identity/% Similarity) | Homologies with Other Siamycin-Like Clusters (% Identity/ % Similarity) | Proposed Function | ||
---|---|---|---|---|---|
abo cluster | msl cluster | spe cluster | |||
HumA | Aborycin family tricyclic lasso peptide (Streptomyces sp. F-7) WP_107308646.1 (95/100) | (92.9/100) | (88.1/97.6) | (86.4/93.2) | Structural gene |
HumB1 | Lasso peptide biosynthesis PqqD family chaperone (Streptomyces) WP_048459499.1 (77/86) | (77/87.4) | (73.6/87.4) | (71.3/86.2) | RiPP recognition element (RRE) protein |
HumB2 | Lasso peptide biosynthesis B2 protein (Streptomyces xanthocidicus) WP_117490375.1 (88/92) | (84.4/90.1) | (86/91.6) | (88.8/91.6) | Leader peptidase |
HumC | Lasso peptide isopeptide bond-forming cyclase (Streptomyces sp. CB02056) WP_074004732.1 (81/87) | (76.1/84.5) | (76/82.1) | (76.3/84) | Lasso peptide cyclase |
HumD1 | ATP-binding, cassette domain-containing protein (Streptomyces yerevanensis) WP_033320332.1 (86/90) | (73.1/84.7) | (71.4/81) | (78.3/86) | Transporter |
HumD2 | ABC transporter permease (Streptomyces scabiei) WP_037695288.1 (92/94) | (79.6/87.6) | (78.1/88.4) | (72.4/82.4) | Transporter |
HumD3 | ATP-binding, cassette domain-containing protein (Streptomyces xanthocidicus) WP_117490377.1 (83/90) | (81.9/90.3) | (81/88.5) | (84.7/91.3) | Transporter |
HumD4 | Multispecies: ABC transporter permease subunit (Streptomyces) WP_095851496.1 (87/91) | (82.1/89.7) | (85.9/91.8) | (82.1/88) | Transporter |
HumE | DoxX family membrane protein (Streptomyces specialis) WP_059005885.1 (71/80) | (66.1/75.4) | (66.5/74.9) | (63.8/72.4) | Disulfide oxidoreductase |
HumF | Thioredoxin domain-containing protein (Streptomyces xanthocidicus) WP_117490379.1 (76/85) | (67.2/76.8) | (70.9/79.9) | (67.9/75.6) | Disulfide oxidoreductase |
HumG | Two-component system sensor kinase (Streptomyces sp. NL15-2K) GCB43196.1 (79/87) | (72.5/82) | (73.6/81.2) | (69.5/77.7) | Regulator |
HumH | Multispecies: CapA family protein (Streptomyces) WP_074004738.1 (81/86) | (73.4/83) | (74.1/83.6) | (75.9/83.4) | Putative epimerase |
HumR1 | Response regulator transcription factor (Streptomyces sp. CB02056) WP_079272571.1 (75/86) | (63.1/78.1) | (66.5/79.6) | (71.4/82.3) | Regulator |
HumR2 | Multispecies: response regulator transcription factor (Streptomyces) WP_046710140.1 (93/97) | (84.4/92) | (87.9/93.3) | (84.8/92.9) | Regulator |
Oligonucleotide | Sequence (5’-3’) | Purpose |
---|---|---|
HumidA_fw | CATGCCGCCCCGTAATTTC | Structural gene amplification |
HumidA_rv | GAGAGGTCGGCGCTGATC | Structural gene amplification |
pCAPHumGibF | AAAGCTCGTTCTATCGCTTTGCCTCGTTCGTCGAGACTTGAGGTACCTGT | Gibson Assembly |
pCAPHumGibR | ATCGCCCAGGTCATCCAGGAGAGCATCGACTCGAGGTTACTAGTCGATCT | Gibson Assembly |
HumGib1F | GTCGATGCTCTCCTGGA | Gibson Assembly |
HumGib1R | CGAATTCCATGTCGCCTC | Gibson Assembly |
HumGib2F | TCTGCTTCTGGTGATCA | Gibson Assembly |
HumGib2R | CCTGCTTGACGTTCATC | Gibson Assembly |
HumidGib3F | CTACCGCTTCTCCCGTAC | Gibson Assembly |
HumidGib3R | AACATCGTCAGGGCCAG | Gibson Assembly |
HumidGib4F | TCCGACGAGACGCTGTC | Gibson Assembly |
HumidGib4R | CGAACGAGGCAAAGCGAT | Gibson Assembly |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Hidalgo, M.; Martín, J.; Genilloud, O. Identification and Heterologous Expression of the Biosynthetic Gene Cluster Encoding the Lasso Peptide Humidimycin, a Caspofungin Activity Potentiator. Antibiotics 2020, 9, 67. https://doi.org/10.3390/antibiotics9020067
Sánchez-Hidalgo M, Martín J, Genilloud O. Identification and Heterologous Expression of the Biosynthetic Gene Cluster Encoding the Lasso Peptide Humidimycin, a Caspofungin Activity Potentiator. Antibiotics. 2020; 9(2):67. https://doi.org/10.3390/antibiotics9020067
Chicago/Turabian StyleSánchez-Hidalgo, Marina, Jesús Martín, and Olga Genilloud. 2020. "Identification and Heterologous Expression of the Biosynthetic Gene Cluster Encoding the Lasso Peptide Humidimycin, a Caspofungin Activity Potentiator" Antibiotics 9, no. 2: 67. https://doi.org/10.3390/antibiotics9020067
APA StyleSánchez-Hidalgo, M., Martín, J., & Genilloud, O. (2020). Identification and Heterologous Expression of the Biosynthetic Gene Cluster Encoding the Lasso Peptide Humidimycin, a Caspofungin Activity Potentiator. Antibiotics, 9(2), 67. https://doi.org/10.3390/antibiotics9020067