Ventilator-Associated Tracheobronchitis: To Treat or Not to Treat?
Abstract
:Highlights
- Diagnosis of ventilator-associated tracheobronchitis (VAT) remains unclear. Better diagnostic criteria necessary to avoid under/over-diagnosis.
- Novel molecular biomarkers and lung ultrasound (LUS) may help increase diagnostic sensitivity of VAT. However, further research into these methods is needed.
- To treat or not to treat: a continuing debate surrounding the uncertainties of the cost/benefit of antibiotic treatment of VAT.
- Controversial use of nebulized/aerosolized antibiotics for VAT in the face of limited evidence of their efficacy.
- Could treating VAT reduce ventilator-associated pneumonia (VAP) and its increased risk of mortality, mechanical ventilation (MV) duration and intensive care unit length of stay (ICU-LOS)? A reasonable assumption that still needs further clarification.
1. Introduction
2. Diagnosis
2.1. Under and Over-diagnosis of VAT
2.2. Possible Diagnostic Adjuncts
3. Treatment
3.1. Reasons to Treat VAT
3.2. Reasons NOT to Treat VAT
3.3. Alternative Treatment Options
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Niederman, M.S. Hospital-acquired pneumonia, health care-associated pneumonia, ventilator-associated pneumonia, and ventilator-associated tracheobronchitis: Definitions and challenges in trial design. Clin. Infect. Dis 2010, 51, S12–S17. [Google Scholar] [CrossRef]
- Rello, J.; Ausina, V.; Castella, J.; Net, A.; Prats, G. Nosocomial respiratory tract infections in multiple trauma patients: Influence of level of consciousness with implications for therapy. Chest 1992, 102, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Nseir, S.; Di Pompeo, P.; Pronnier, S.; Beague, T.; Onimus, F.; Saulnier, B.; Grandbastien, D.; Mathieu, M.; Delvallez-Roussel, A. Nosocomial tracheobronchitis in mechanically ventilated patients: Incidence, aetiology and outcome. Eur. Resp. J. 2002, 20, 1483–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rello, J.; Lisboa, T.; Koulenti, D. Respiratory infections in patients undergoing mechanical ventilation. Lancet Respir. Med. 2014, 2, 764–774. [Google Scholar] [CrossRef]
- Agrafiotis, M.; Siempos, I.I.; Falagas, M.E. Frequency, prevention, outcome and treatment of ventilator-associated tracheobronchitis: Systematic review and meta-analysis. Respir. Med. 2010, 104, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Craven, D.E.; Lei, Y.; Ruthazer, R.; Sarwar, A.; Hudcova, J. Incidence and outcomes of ventilator-associated tracheobronchitis and pneumonia. Am. J. Med. 2013, 126, 542–549. [Google Scholar] [CrossRef]
- Dallas, J.; Skrupky, L.; Abebe, N.; Boyle, W.A.; Kollef, M.H. Ventilator-associated tracheobronchitis in a mixed surgical and medical ICU population. Chest 2011, 139, 513–518. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Makris, D.; Manoulakas, E.; Zygoulis, P.; Mantzarlis, K.; Triantaris, A.; Chatzi, M.; Zakynthinos, E. Ventilator-associated tracheobronchitis increases the length of intensive care unit stay. Infect. Control Hosp. Epidemiol. 2013, 34, 800–808. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Povoa, P.; Rodriguez, A.; Curcio, D.; Suarez, D.; Mira, J.P.; Cordero, M.L.; Lepecq, R.; Girault, C.; Candeias, C.; et al. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): A multicentre, prospective, observational study. Lancet Respir. Med. 2015, 3, 859–868. [Google Scholar] [CrossRef]
- Nseir, S.; Di Pompeo, C.; Soubrier, S.; Delour, P.; Onimus, T.; SAulinier, F.; Durocher, A. Outcomes of ventilated COPD patients with nosocomial tracheobronchitis: A case-control study. Infection 2004, 32, 210–216. [Google Scholar] [CrossRef]
- Nseir, S.; Di Pompeo, C.; Soubrier, S.; Lenci, H.; Delour, P.; Onimus, T.; Saulnier, F.; Mathieu, D.; Durocher, A. Effect of ventilator-associated tracheobronchitis on outcome in patients without chronic respiratory failure: A case–control study. Crit. Care 2005, 9, R238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nseir, S.; Favory, R.; Jozefowicz, E.; Decamps, F.; Dewavrin, F.; Brunin, G.; Di Pompeo, C.; Mathieu, D.; Durocher, A.; VAT Study Group. Antimicrobial treatment for ventilator-associated tracheobronchitis: A randomized, controlled, multicenter study. Crit. Care 2008, 12, R62. [Google Scholar] [CrossRef] [Green Version]
- Nseir, S.; Martin-Loeches, I. Ventilator-associated tracheobronchitis: Where are we now? Rev. Bras. Ter. Intensiva 2014, 26, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Shahin, J.; Bielinski, M.; Guichon, C.; Flemming, C.; Kristof, A.S. Suspected ventilator-associated respiratory infection in severely ill patients: A prospective observational study. Crit. Care 2013, 17, R251. [Google Scholar] [CrossRef] [Green Version]
- Bouza, E.; Perez, A.; Munoz, P.; Jesus Perez, M.; Sanchez, C.; Martin-Rabadan, P.; Riesgo, M.; Cardiovascular Infection Study Group. Ventilator-associated pneumonia after heart surgery: A prospective analysis and the value of surveillance. Crit. Care Med. 2003, 31, 1964–1970. [Google Scholar] [CrossRef]
- Ramirez-Estrada, S.; Lagunes, L.; Pena-Lopez, Y.; Vehedian-Azimi, A.; Nseir, S.; Arvaniti, K.; Bastug, A.; Totorika, I.; Oztoprak, N.; Bouadma, L.; et al. Assessing predictive accuracy for outcomes of ventilator-associated events in an international cohort: The EUVAE study. Intensive Care Med. 2018, 44, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Nseir, S.; Martin-Loeches, I.; Makris, D.; Jaillette, E.; Karvouniaris, M.; Valles, J.; Zakynthinos, E.; Artigas, A. Impact of appropriate antimicrobial treatment on transition from ventilator-associated tracheobronchitis to ventilator-associated pneumonia. Critic. Care 2014, 18, R129. [Google Scholar] [CrossRef] [Green Version]
- Palmer, L.B.; Smaldone, G.C.; Chen, J.J.; Baram, D.; Duan, T.; Monteforte, M.; Varela, M.; Tempone, A.K.; O’Riordan, T.; Daroowalla, F.; et al. Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit.Care Med. 2008, 36. [Google Scholar] [CrossRef]
- Kalil, A.C.; Matersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Barlett, J.G.; Carratala, J.; et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Gunasekera, P.G.A. Ventilator-associated Pneumonia. BJA Educ. 2016, 16, 198–202. [Google Scholar]
- Safdar, N.; Crnich, C.J.; Maki, D.G. The pathogenesis of ventilator-associated pneumonia: Its relevance to developing effective strategies for prevention. Respir. Care 2005, 50, 725–741. [Google Scholar] [PubMed]
- Craven, D.E. Ventilator-associated tracheobronchitis (VAT): Questions, answers, and a new paradigm? Care 2008, 12, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, L.B. Ventilator-associated tracheobronchitis and pneumonia. Lancet Respir. Med. 2015, 3, 826–827. [Google Scholar] [CrossRef]
- Esayag, Y.; Nikitin, I.; Bar-Ziv, J.; Cytter, R.; Hadas-Halpern, I.; Zalut, T.; Yinnon, A.M. Diagnostic value of chest radiographs in bedridden patients suspected of having pneumonia. Am. J. Med. 2010, 123, 88.e1–88.e5. [Google Scholar] [CrossRef] [PubMed]
- Centers_for_Disease_Control_and_Prevention. Ventilator-Associated Event (VAE). 1 January 2020. Available online: https://www.cdc.gov/nhsn/PDFs/pscManual/10-VAE_FINAL.pdf (accessed on 20 January 2020).
- Magill, S.S.; Klompas, M.; Balk, R.; Burns, S.M.; Diekema, D.; Fridkin, S.; Greene, L.; Guh, A.; Gutterman, D.; Hammer, B.; et al. Developing a new, national approach to surveillance for ventilator-associated events: Executive summary. Clin. Infect. Dis. 2013, 57, 1742–1746. [Google Scholar] [CrossRef] [Green Version]
- Lopansri, B.K.; Miller, R.R.; Burke, J.P.; Levy, M.; Opal, S.; Rothman, R.E.; D’Alessio, F.R.; Sidhaye, S.K.; Balk, R.; Greenberg, J.A.; et al. Physician agreement on the diagnosis of sepsis in the intensive care unit: Estimation of concordance and analysis of underlying factors in a multicenter cohort. J. Intensive Care 2019, 7, 13. [Google Scholar] [CrossRef]
- Coelho, L.; Rebello, L.; Salluh, J.; Martin-Loeches, I.; Rodriguez, A.; Nseir, S.; Gomes, J.A.; Povoa, P.; TAVeM study Group. C-reactive protein and procalcitonin profile in ventilator-associated lower respiratory infections. J. Crit. Care 2018, 48, 385–389. [Google Scholar] [CrossRef]
- McHugh, L.; Seldon, T.A.; Brandon, R.A.; Kirk, J.T.; Rapisarda, A.; Sutherland, A.J.; Presneill, J.J.; Venter, D.J.; Lipman, J.; Thomas, M.R.; et al. A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts. PLoS Med. 2015, 12, e1001916. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, A.; Thomas, M.; Brandon, R.A.; Brandon, R.B.; Lipman, J.; Tang, B.; McLean, A.; Pascoe, R.; Price, G.; Nguyen, T.; et al. Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit. Care 2011, 15, R149. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, S.A.; Al-Salamah, M.A.; Al-Madani, W.H.; Elbarbary, M.A. Systematic review and meta-analysis for the use of ultrasound versus radiology in diagnosing of pneumonia. Crit. Ultrasound J. 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Chavez, M.A.; Shams, N.; Elington, L.E.; Naithani, N.; Gilman, R.H.; Steinhoff, M.C.; Santosham, M.; Black, R.E.; Price, C.; Gross, M.; et al. Lung ultrasound for the diagnosis of pneumonia in adults: A systematic review and meta-analysis. Respir. Res. 2014, 15, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.J.; Shen, Y.C.; Jia, L.Q.; Guo, S.J.; Long, H.Y.; Pang, C.S.; Yang, T.; Wen, F.Q. Diagnostic performance of lung ultrasound in the diagnosis of pneumonia: A bivariate meta-analysis. Int. J. Clin. Exp. Med. 2014, 7, 115–121. [Google Scholar] [PubMed]
- Bourcier, J.E.; Paquet, J.; Seinger, M.; Gallard, E.; Redonnet, J.P.; Cheddadi, F.; Garnier, D.; Bourgeois, J.M.; Geeraerts, T. Performance comparison of lung ultrasound and chest x-ray for the diagnosis of pneumonia in the ED. Am. J. Emerg. Med. 2014, 32, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Povoa, P.; Nseir, S.; Salluh, J.; Curcio, D.; Martin-Loeches, I.; TAVeM group investigators. Incidence and diagnosis of ventilator-associated tracheobronchitis in the intensive care unit: An international online survey. Crit. Care 2014, 18, R32. [Google Scholar] [CrossRef] [Green Version]
- Kollef, K.E.; Schramm, G.E.; Wills, A.R.; Reichley, R.M.; Micek, S.T.; Kollef, M.H. Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant gram-negative bacteria. Chest 2008, 134, 281–287. [Google Scholar] [CrossRef]
- Craven, D.E.; Chroneou, A.; Zias, N.; Hjalmarson, K.I. Ventilator-associated tracheobronchitis: The impact of targeted antibiotic therapy on patient outcomes. Chest 2009, 135, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Palmer, L.B.; Smaldone, G.C. Reduction of bacterial resistance with inhaled antibiotics in the intensive care unit. Am. J. Respir. Crit. Care Med. 2014, 189, 1225–1233. [Google Scholar] [CrossRef]
- Mendelman, P.M.; Smith, A.L.; Levy, J.; Weber, A.; Ramsey, B.; Davis, R.L. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. Am. Rev. Respir. Dis. 1985, 132, 761–765. [Google Scholar]
- Russell, C.J.; Shiroishi, M.S.; Siantz, E.; Wu, B.W.; Patino, C.M. The use of inhaled antibiotic therapy in the treatment of ventilator-associated pneumonia and tracheobronchitis: A systematic review. BMC Pulm. Med. 2016, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Sole-Lleonart, C.; Rouby, J.J.; Blot, S.; Poulakou, G.; Chastre, J.; Palmer, L.B.; Basseti, M.; Luyt, C.E.; Pereira, J.M.; Riera, J.; et al. Nebulization of Antiinfective Agents in Invasively Mechanically Ventilated AdultsA Systematic Review and Meta-analysis. Anesthesiology 2017, 126, 890–908. [Google Scholar] [CrossRef]
- Rello, J.; Sole-Lleonart, C.; Rouby, J.J.; Chastre, J.; Blot, S.; Poulakou, G.; Luyt, C.E.; Riera, J.; Palmer, L.B.; Pereira, J.M.; et al. Use of nebulized antimicrobials for the treatment of respiratory infections in invasively mechanically ventilated adults: A position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Infect. 2017, 23, 629–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, J.; Alp, E.; Koulenti, D.; Zhang, Z.; Ehrmann, S.; Blot, S.; Bassetti, M.; Conway-Morris, A.; Reina, R.; Teran, E.; et al. Nebulization of antimicrobial agents in mechanically ventilated adults in 2017: An international cross-sectional survey. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Voulgaris, G.L.; Samonis, G.; Falagas, M.E. Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2017, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maskin, L.P.; Setten, M.; Rodriguez, P.O.; Bonelli, I.; Attie, S.; Stryjewski, M.E.; Valentini, R. Inhaled colistimethate sodium in ventilator-associated tracheobronchitis due to multidrug-resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2015, 45, 199–200. [Google Scholar] [CrossRef] [PubMed]
Article | Type | Cohort | Transition of VAT to VAP | Impact on MV duration, ICU-LOS, Mortality | Pathogens |
---|---|---|---|---|---|
[3] | Prospective, observational, single centre cohort study | 1889 patients | VAT: 201/1889 (10.6%) | VAT significantly increased MV duration & ICU-LOS in both medical and surgical patients, BUT non-significant difference in mortality Mortality only significantly improved with VAT treatment in medical patients. All other outcomes: not significant | VAT - Pseudomonas = 72 - Acinobacter = 61 - Klebsiella = 10 - Serratia = 13 - E. coli = 9 - MRSA = 38 - MSSA = 8 |
[15] | Prospective, single centre, | 356 patients, all undergoing major cardiac procedures | Frequency of VAP = 7.87% (28/356) Frequency of VAT = 8.15% (29/356) -5/29 progressed to VAP | ICU-LOS -VAP: significant increase in mean length of stay (p < 0.05) -VAT: Insignificant difference MV duration -Significant longer in combined VAT/VAP group compared to no infection (p < 0.0001) Mortality -Significantly higher in VAP (16/28 = 57.1%) and VAT (6/29 = 20.7%) than non-colonized patients | VAP (28 total) - Pseudomonas =5 - S. aureus = 5 - Serratia = 3 - Polymicrobial = 3 VAT (29 total) - H. influenzae = 9 - Moraxella catarrhalis = 2 - Polymicrobial = 2 |
[10] | Prospective, observational, case-control study | 1131 patients | VAT: 103/1131 (9.1%) 11/103 (10.6%) progressed to VAP 81/103 were control matched | ICU-LOS -Significantly longer in VAT (p = 0.022) MV duration -Significantly longer in VAT (p = 0.015) ICU mortality: -No significant difference | VAT (n = 81) - Pseudomonas = 32 - Serratia = 6 - H. influenzae = 5 - Enterobacter = 7 - MRSA = 19 - MSSA = 6 |
[11] | Retrospective, single centre, case-control study | 792 patients | VAT: 70/792 (8%) 7/70 progressing to VAP | MV duration (p = 0.001) & ICU-LOS (p = 0.001) significantly longer in VAT ICU mortality showed no significant difference | VAT - Pseudomonas = 30 - Acinetobacter = 16 - Serratia = 6 - MRSA = 10 - MSSA = 5 |
[18] | Phase III, double-blinded placebo-controlled, single centre study | 43 patients | n/a | Number of MV-free days not significantly different. Mortality between the two groups were not significantly different. | n/a |
[12] | Prospective, multicentre, randomized controlled, unblinded study | 58 patients randomly assigned; 44 included in the analysis | Progression to VAP 20/58 progressed to VAP | Progression to VAP, MV duration & mortality significantly improved with antibiotics treatment of VAT, causing the study to be terminated early | VAT - Pseudomonas = 32% - MSSA = 3 - MRSA = 3 - E. coli = 3 - Proteus mirabilis = 3 |
[7] | Single centre, prospective, observational study | 2060 patients admitted to ICU over 1 year; 111 were identified as having VAP or VAT | VAP: 83/111 (74.8%) VAT: 28/111 (25.2%) Progressed to VAP in 9 patients (32.1%) | No significant difference between ICU-LOS or MV duration between both VAT and VAP groups. Mortality was not an outcome measured | VAP - MRSA = 10 - MSSA = 9 - S. pneumoniae = 5 - Acinetobacter = 10 - Pseudomonas = 11 - Enterobacter = 6 VAT - MRSA = 6 - MSSA = 4 - Acinetobacter = 5 - Pseudomonas = 3 - H. influenzae = 3 |
[6] | Prospective, single ICU study | 188 patients | VAP & VAT: 43/188 (23%) 6 with VAT progressed to VAP (29%) | ICU-LOS -VAT + VAP: both significantly longer (p < 0.02 & p = 0.02) MV duration -VAT: Significantly longer (p = 0.01) -VAP: Significantly longer (p = 0.01) Mortality -VAT + VAP = no difference | VAP (28) - MRSA = 6 - MSSA = 11 - E. coli = 3 VAT (21) - MRSA = 5 - MSSA = 8 - P. aeruginosa = 4 |
[8] | Prospective, observational, single centre cohort study | 236 patients | VAP: 78/236 (33.1%) VAT: 42/236 (18%) 7/42 later progressed to VAP with same organism | ICU-LOS -VAT: prolonged ICU stay (p = 0.007) MV duration -VAT: prolonged compared to no infection (p = 0.002), but significantly less than VAP (p = 0.004) Mortality -VAT: no increased mortality | VAP - Acinobacter = 40% VAT - Acinobacter = 20% - Pseudomonas = 10% - Klebsiella = 8% |
[14] | Prospective, single centre, observational study | 287 patients ventilated for >48hrs in ICU | Suspected (s) VARI= 77/287 -sVAT = 48 (62%) -sVAP = 29 (38%) | ICU-LOS -sVAP = significantly increased (p < 0.01) -sVAT = significantly increased (p < 0.003) | n/a |
[17] | Prospective observational multicentre study | 1501 patients | VAT: 122/1501 (7.1%) 17 (13.9%) progressed to VAP | n/a | VAT - Pseudomonas = 44 - Enterobacter = 12 - E. coli = 6 - Acinetobacter = 14 - Klebsiella = 13 - MRSA 12 - MSSA 13 |
[9] | Multicentre, prospective observational study | 2960 patients | VAP: 269/2960 (12%) VAT: 320/2960 (11%) 39 progressed to VAP | ICU-LOS -significantly increased in VAT + VAP compared to no respiratory infection MV duration -significantly increased in VAT + VAP compared to no respiratory infection | VAP - S. pneumoniae = 24 - Stenotrophomonas = 12 - MSSA = 80 - MRSA = 8 - Pseudomonas = 89 - Klebsiella = 53 - E. coli = 40 - Enterobacter = 46 VAT - S. pneumoniae = 16 - Stenotrophomonas = 19 - MRSA= 8 - MSSA 66 - Pseudomonas = 79 - Klebsiella = 48 - H. nfluenzae = 32 - E. coli = 37 - Enterobacter = 35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulenti, D.; Arvaniti, K.; Judd, M.; Lalos, N.; Tjoeng, I.; Xu, E.; Armaganidis, A.; Lipman, J. Ventilator-Associated Tracheobronchitis: To Treat or Not to Treat? Antibiotics 2020, 9, 51. https://doi.org/10.3390/antibiotics9020051
Koulenti D, Arvaniti K, Judd M, Lalos N, Tjoeng I, Xu E, Armaganidis A, Lipman J. Ventilator-Associated Tracheobronchitis: To Treat or Not to Treat? Antibiotics. 2020; 9(2):51. https://doi.org/10.3390/antibiotics9020051
Chicago/Turabian StyleKoulenti, Despoina, Kostoula Arvaniti, Mathew Judd, Natasha Lalos, Iona Tjoeng, Elena Xu, Apostolos Armaganidis, and Jeffrey Lipman. 2020. "Ventilator-Associated Tracheobronchitis: To Treat or Not to Treat?" Antibiotics 9, no. 2: 51. https://doi.org/10.3390/antibiotics9020051
APA StyleKoulenti, D., Arvaniti, K., Judd, M., Lalos, N., Tjoeng, I., Xu, E., Armaganidis, A., & Lipman, J. (2020). Ventilator-Associated Tracheobronchitis: To Treat or Not to Treat? Antibiotics, 9(2), 51. https://doi.org/10.3390/antibiotics9020051