Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece
Abstract
:1. Introduction
2. Methodology and Results
- (a)
- TP Rate: rate of true positives (instances correctly classified as a given class);
- (b)
- FP Rate: rate of false positives (instances falsely classified as a given class);
- (c)
- Precision: the proportion of instances that are truly of a class divided by the total instances classified as that class;
- (d)
- Recall: the proportion of instances classified as a given class divided by the actual total in that class (equivalent to TP rate);
- (e)
- F-Measure: a general indicator of the quality of the model;
- (f)
- MMC: a correlation coefficient calculated from all four values of the confusion matrix.
- (g)
- Area under the Receiver Operating Characteristics (ROC) curve (AUC): a graphical plot that illustrates the performance of a binary classifier system as its discrimination threshold is varied. The accuracy of the test depends on how well the test separates the group being tested into those with and without the disease in question. Accuracy is measured by the area under the ROC curve;
- (h)
- The Precision-Recall Plot (PRC) plot shows the relationship between precision and sensitivity.
2.1. LIBLINEAR-L2-Regularized L1- and L2-loss Support Vector Classification (SVC)
2.2. LIBSVM C-Support Vector Classification
2.3. Sequential Minimal Optimization (SMO)
2.4. Instance-Based Learning (k-Nearest Neighbors)
2.5. J48
2.6. Random Forest
2.7. RIPPER
2.8. Multilayer Perceptron (MLP)
3. Discussion
4. Materials and Methods
4.1. Samples-Source of Isolates
4.2. Antimicrobial Susceptibility Data
4.3. Bacterial Pathogens and Antibiotics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gandra, S.; Barter, D.M.; Laxminarayan, R. Economic burden of antibiotic resistance: How much do we really know? Clin. Microbiol. Infect. 2014, 20, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Burden of AMR Collaborative Group Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 2015, 45, 568–585. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2015; Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Sweden, 2017.
- Albiger, B.; Glasner, C.; Struelens, M.J.; Grundmann, H.; Monnet, D.L. European Survey of Carbapenemase-Producing Enterobacteriaceae working group Carbapenemase-producing Enterobacteriaceae in Europe: Assessment by national experts from 38 countries. Euro Surveill. 2015, 20, 30062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maltezou, H.C.; Kontopidou, F.; Dedoukou, X.; Katerelos, P.; Gourgoulis, G.M.; Tsonou, P.; Maragos, A.; Gargalianos, P.; Gikas, A.; Gogos, C.; et al. Working Group for the National Action Plan to Combat Infections due to Carbapenem-Resistant, Gram-Negative Pathogens in Acute-Care Hospitals in Greece. Action Plan to combat infections due to carbapenem-resistant, Gram-negative pathogens in acute-care hospitals in Greece. J. Glob. Antimicrob. Resist. 2014, 2, 11–16. [Google Scholar] [PubMed]
- Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Skarmoutsou, N.; Michelidou, S.; Velentza, A.; Martsoukou, M.; Valakis, K.; Petropoulou, S.; Koutalas, E. A 2-Year Single-Centre Audit on Antibiotic Resistance of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae Strains from an Intensive Care Unit and Other Wards in a General Public Hospital in Greece. Antibiotics 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feretzakis, G.; Loupelis, E.; Petropoulou, S.; Christopoulos, C.; Lada, M.; Martsoukou, M.; Skarmoutsou, N.; Sakagianni, A.; Michelidou, S.; Velentza, A.; et al. Using Microbiological Data Analysis to Tackle Antibiotic Resistance of Klebsiella Pneumoniae. In Proceedings of the 18th International Conference on Informatics, Management, and Technology in Healthcare (ICIMTH), Athens, Greece, 5–7 July 2019; IOS Press: Amsterdam, The Netherlands, 2019; Volume 262, pp. 180–183. [Google Scholar] [CrossRef]
- Sterling, S.; Miller, W.; Pryor, J.; Puskarich, M.; Jones, A. The Impact of Timing of Antibiotics on Outcomes in Severe Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Crit. Care Med. 2015, 43, 1907–1915. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, R.; Winters, M.; Vilke, G.; Wardi, G. Does Early and Appropriate Antibiotic Administration Improve Mortality in Emergency Department Patients with Severe Sepsis or Septic Shock? J. Emerg. Med. 2017, 53, 588–595. [Google Scholar] [CrossRef]
- Martínez-Agüero, S.; Mora-Jiménez, I.; Lérida-García, J.; Álvarez-Rodríguez, J.; Soguero-Ruiz, C. Machine Learning Techniques to Identify Antimicrobial Resistance in the Intensive Care Unit. Entropy 2019, 21, 603. [Google Scholar] [CrossRef] [Green Version]
- Oonsivilai, M.; Mo, Y.; Luangasanatip, N.; Lubell, Y.; Miliya, T.; Tan, P.; Cooper, B.S. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a childrens hospital in Cambodia. Wellcome Open Res. 2018, 3, 131. [Google Scholar] [CrossRef]
- Revuelta-Zamorano, P.; Sánchez, A.; Rojo-Álvarez, J.; Álvarez Rodríguez, J.; Ramos-López, J.; Soguero-Ruiz, C. Prediction of Healthcare Associated Infections in an Intensive Care Unit Using Machine Learning and Big Data Tools. In Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing; Springer: Cham, Switzerland, 2016; pp. 840–845. [Google Scholar]
- Martínez-Agüero, S.; Lérida-García, J.; Álvarez Rodríguez, J.; Mora-Jiménez, I.; Soguero-Ruiz, C. Estudio de la evolución temporal de la resistenciaantimicrobiana de gérmenesen la unidad de cuidadosintensivos. In Proceedings of the XXXVI CongresoAnual de la Sociedad Española de IngenieríaBiomédica (CASEIB 2018), Ciudad Real, Spain, 21–23 November 2018. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. The WEKA data mining software. ACM SIGKDD Explor. Newslett. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Smith, T.C.; Frank, E. Introducing Machine Learning Concepts with WEKA. Methods Mol. Biol. Stat. Genomics 2016, 353–378. [Google Scholar] [CrossRef] [Green Version]
- Kasperczuk, A.; Dardzińska, A. Comparative Evaluation of the Different Data Mining Techniques Used for the Medical Database. Acta Mech. Autom. 2016, 10, 233–238. [Google Scholar] [CrossRef]
- Han, J.; Pei, J.; Yin, Y. Mining frequent patterns without candidate generation. ACM SIGMOD Rec. 2000, 29, 1–12. [Google Scholar] [CrossRef]
- Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear classification. J Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 24 January 2020). [CrossRef]
- Boser, B.; Guyon, I.; Vapnik, V. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory; Haussler, D., Ed.; ACM Press: New York, NY, USA, 1992. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector network. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Platt, J. Fast Training of Support Vector Machines using Sequential Minimal Optimization. In Advances in Kernel Methods—Support Vector Learning; Schoelkopf, B., Burges, C., Smola, A., Eds.; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Keerthi, S.; Shevade, S.; Bhattacharyya, C.; Murthy, K. Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Comput. 2001, 13, 637–649. [Google Scholar] [CrossRef]
- Ramyaa, R.; Hosseini, O.; Krishnan, G.P.; Krishnan, S. Phenotyping Women Based on Dietary Macronutrients, Physical Activity, and Body Weight Using Machine Learning Tools. Nutrients 2019, 11, 1681. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.M. Machine Learning, 1st ed.; McGraw-Hill Inc.: New York, NY, USA, 1997. [Google Scholar]
- Agnar, A.; Enric, P. Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun. 1994, 7, 39–59. [Google Scholar]
- Aha, D.; Kibler, D.; Albert, M. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef] [Green Version]
- Aha, D.; Kibler, D. Noise-tolerant instance-based learning algorithms. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI 89), Detroit, MI, USA, 20–25 August 1989; pp. 794–799. [Google Scholar]
- Quinlan, J.R. C4.5. Programs for Machine Learning; Morgan Kaufmann: San Francisco, CA, USA, 1993. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W. Fast Effective Rule Induction. In Proceedings of the Twelfth International Conference on Machine Learning (ICML95), Tahoe City, California, USA, 9–12 July 1995; Prieditis, A., Russel, S., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1995; pp. 115–123. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Moradigaravand, D.; Palm, M.; Farewell, A.; Mustonen, V.; Warringer, J.; Parts, L. Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Comput. Biol. 2018, 14, e1006258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.; Long, S.W.; Mcdermott, P.F.; Olsen, R.J.; Olson, R.; Stevens, R.L.; Davis, J.J. Using Machine Learning To Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal Salmonella. J. Clin. Microbiol. 2018, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balows, A.; HauslerjR, W.J.; Herrmann, K.L.; Isenberg, H.D.; Shadomy, H.J. Manual of Clinical Microbiology, 5th ed.; American Society for Microbiology: Washington, DC, USA, 1991. [Google Scholar]
- Isenberg, H. Antimicrobial susceptibility testing. Clin. Microbiol. Proced. Handb. 2004, 2, 1–5. [Google Scholar]
- Murray, P.; Baron, E.J.; Jorgensen, J.; Pfaller, M.; Yolken, R. Manual of Clinical Microbiology, 8th ed.; American Society of Microbiology Press: Washington, DC, USA, 2005. [Google Scholar]
- Jorgensen, J.; Pfaller, M.; Carroll, K.; Funke, G.; Landry, M.L.; Richter, S.; Warnock, D. Manual of Clinical Microbiology, 11th ed.; American Society of Microbiology Press: Washington, DC, USA, 2015. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; CLSI: Wayne, PA, USA, 2016. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Clinical Breakpoints for Bacteria; EUCAST: Copenhagen, Denmark, 2016. [Google Scholar]
- Tsakris, A.; Poulou, A.; Pournaras, S.; Voulgari, E.; Vrioni, G.; Themeli-Digalaki, K.; Petropoulou, D.; Sofianou, D. A simple phenotypic method for the differentiation of metallo-β-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J. Antimicrob. Chemother. 2010, 65, 1664–1671. [Google Scholar] [CrossRef] [Green Version]
- Skarmoutsou, N.; Adamou, D.; Tryfinopoulou, K.; Xirokosta, P.; Mylona, E.; Giakkoupi, P.; Karadimas, K.; Zervogianni, A.; Martsoukou, M. Performance of NG-Test CARBA 5 immunochromatographic assay for the detection of carbapenemases among multidrug-resistant clinical strains in Greece. In Proceedings of the 29th European Congress of Clinical Microbiology & Infectious Diseases (ECCMID 2019), Amsterdam, The Netherlands, 13–16 April 2019. [Google Scholar]
- Yong, D.; Lee, K.; Yum, J.H.; Shin, H.B.; Rossolini, G.M.; Chong, Y. Imipenem-EDTA disk method for differentiation of metallobeta—Lactamase-producing clinical isolates of Pseudomonas spp. And Acinetobacter spp. J. Clinmicrobiol. 2002, 40, 3798–3801. [Google Scholar]
- Lee, K.; Lim, Y.S.; Yong, D.; Yum, J.H.; Chong, Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clinmicrobiol. 2003, 41, 4623–4629. [Google Scholar]
- Flountzi, A.; Giakkoupi, P.; Tryfinopoulou, K.; Pappa, O.; Vatopoulos, A.; Martsoukou, M.; Skarmoutsou, N.; Lebessi, E.; Charisiadou, A.E.; Chatzivasileiou, E.; et al. Investigation of Klebsiella pneumoniae clinical isolates from 2016 onwards for the putative presence of the plasmid-mediated mcr-1 gene for colistin resistance. In Proceedings of the 29th European Congress of Clinical Microbiology & Infectious Diseases (ECCMID 2019), Amsterdam, The Netherlands, 13–16 April 2019. [Google Scholar]
Age (Years) | Gender | Gram Stain | Class | |
---|---|---|---|---|
Mean | 61.68 | Male (44%) | Positive (16.20%) | Resistant (51.20%) |
St.Dev. | 19.66 | Female (56%) | Negative (83.80%) | Sensitive (48.80%) |
Range | 80 | |||
Type of Samples | ||||
Blood (7.38%) | Tracheobronchial (60.90%) | Urine (20.40%) | Peritoneal (2.01%) | |
Tissue (5.29%) | Catheters (3.76%) | Pleural (0.26%) |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.593 | 0.456 | 0.577 | 0.593 | 0.585 | 0.137 | 0.568 | 0.550 | R | |
0.544 | 0.407 | 0.560 | 0.544 | 0.552 | 0.137 | 0.568 | 0.527 | S | |
Weighted Avg. | 0.569 | 0.432 | 0.569 | 0.569 | 0.569 | 0.137 | 0.568 | 0.539 |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.752 | 0.433 | 0.646 | 0.752 | 0.695 | 0.325 | 0.660 | 0.613 | R | |
0.567 | 0.248 | 0.686 | 0.567 | 0.621 | 0.325 | 0.660 | 0.600 | S | |
Weighted Avg. | 0.662 | 0.343 | 0.665 | 0.662 | 0.659 | 0.325 | 0.660 | 0.607 |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.787 | 0.470 | 0.638 | 0.787 | 0.705 | 0.329 | 0.659 | 0.611 | R | |
0.530 | 0.213 | 0.704 | 0.530 | 0.605 | 0.329 | 0.659 | 0.602 | S | |
Weighted Avg. | 0.662 | 0.344 | 0.670 | 0.662 | 0.656 | 0.329 | 0.659 | 0.607 |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.727 | 0.448 | 0.630 | 0.727 | 0.675 | 0.283 | 0.682 | 0.656 | R | |
0.552 | 0.273 | 0.658 | 0.552 | 0.600 | 0.283 | 0.682 | 0.666 | S | |
Weighted Avg. | 0.641 | 0.363 | 0.644 | 0.641 | 0.639 | 0.283 | 0.682 | 0.661 |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.726 | 0.432 | 0.638 | 0.726 | 0.679 | 0.298 | 0.711 | 0.687 | R | |
0.568 | 0.274 | 0.664 | 0.568 | 0.612 | 0.298 | 0.711 | 0.717 | S | |
Weighted Avg. | 0.649 | 0.355 | 0.651 | 0.649 | 0.647 | 0.298 | 0.711 | 0.702 |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.765 | 0.427 | 0.653 | 0.765 | 0.705 | 0.345 | 0.724 | 0.696 | R | |
0.573 | 0.235 | 0.699 | 0.573 | 0.630 | 0.345 | 0.724 | 0.733 | S | |
Weighted Avg. | 0.671 | 0.333 | 0.676 | 0.671 | 0.668 | 0.345 | 0.724 | 0.714 |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.674 | 0.396 | 0.641 | 0.674 | 0.657 | 0.279 | 0.703 | 0.681 | R | |
0.604 | 0.326 | 0.638 | 0.604 | 0.621 | 0.279 | 0.703 | 0.717 | S | |
Weighted Avg. | 0.640 | 0.362 | 0.640 | 0.640 | 0.639 | 0.279 | 0.703 | 0.698 |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.735 | 0.380 | 0.670 | 0.735 | 0.701 | 0.358 | 0.699 | 0.653 | R | |
0.620 | 0.265 | 0.691 | 0.620 | 0.653 | 0.358 | 0.699 | 0.694 | S | |
Weighted Avg. | 0.679 | 0.324 | 0.680 | 0.679 | 0.678 | 0.358 | 0.699 | 0.673 |
Measure | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | Class |
---|---|---|---|---|---|---|---|---|---|
0.706 | 0.380 | 0.661 | 0.706 | 0.683 | 0.327 | 0.726 | 0.706 | R | |
0.620 | 0.294 | 0.668 | 0.620 | 0.643 | 0.327 | 0.726 | 0.743 | S | |
Weighted Avg. | 0.664 | 0.338 | 0.664 | 0.664 | 0.663 | 0.327 | 0.726 | 0.724 |
Technique | F-Measure | ROC Area |
---|---|---|
LIBLINEAR | 0.569 | 0.568 |
LIBSVM | 0.659 | 0.660 |
SMO | 0.656 | 0.660 |
kNN-5 | 0.647 | 0.711 |
J48 | 0.639 | 0.724 |
Random Forest | 0.639 | 0.703 |
RIPPER | 0.678 | 0.699 |
Multilayer perceptron | 0.663 | 0.726 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Kalles, D.; Martsoukou, M.; Lada, M.; Skarmoutsou, N.; Christopoulos, C.; Valakis, K.; Velentza, A.; et al. Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiotics 2020, 9, 50. https://doi.org/10.3390/antibiotics9020050
Feretzakis G, Loupelis E, Sakagianni A, Kalles D, Martsoukou M, Lada M, Skarmoutsou N, Christopoulos C, Valakis K, Velentza A, et al. Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiotics. 2020; 9(2):50. https://doi.org/10.3390/antibiotics9020050
Chicago/Turabian StyleFeretzakis, Georgios, Evangelos Loupelis, Aikaterini Sakagianni, Dimitris Kalles, Maria Martsoukou, Malvina Lada, Nikoletta Skarmoutsou, Constantinos Christopoulos, Konstantinos Valakis, Aikaterini Velentza, and et al. 2020. "Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece" Antibiotics 9, no. 2: 50. https://doi.org/10.3390/antibiotics9020050
APA StyleFeretzakis, G., Loupelis, E., Sakagianni, A., Kalles, D., Martsoukou, M., Lada, M., Skarmoutsou, N., Christopoulos, C., Valakis, K., Velentza, A., Petropoulou, S., Michelidou, S., & Alexiou, K. (2020). Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiotics, 9(2), 50. https://doi.org/10.3390/antibiotics9020050