High Prevalence of blaCTX-M-15 Gene among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Causing Extraintestinal Infections in Bangladesh
Abstract
:1. Introduction
2. Results
2.1. Multidrug Resistance
2.2. Group B2 Was the Most Prevalent Phylogenetic Group
2.3. Over Half of the Isolates Were ESBL Producers with blaCTX-M-15 Gene Being Dominant
2.4. Molecular Characteristics of Carbapenem Resistant Strains
2.5. All Four Major Sequence Types (STs) Were Detected
2.6. Pathotype Assignment
3. Discussion
4. Methods
4.1. Sample Collection
4.2. Antimicrobial Susceptibility Testing and ESBL Detection
4.3. Molecular Characterization of Antimicrobial Resistance
4.4. Determination of Phylogroups and Major E. coli Sequence Types
4.5. Detection of pks-Genomic Island
4.6. Pathotype Assignment
4.7. Statistics
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussain, A.; Ranjan, A.; Nandanwar, N.; Babbar, A.; Jadhav, S.; Ahmed, N. Genotypic and phenotypic profiles of Escherichia coli isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob. Agents Chemother. 2014, 58, 7240–7249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjan, A.; Shaik, S.; Hussain, A.; Nandanwar, N.; Semmler, T.; Jadhav, S.; Wieler, L.H.; Ahmed, N. Genomic and functional portrait of a highly virulent, CTX-M-15-producing H30- Rx subclone of Escherichia coli sequence type (ST) 131. Antimicrob. Agents Chemother. 2015, 59, 6087–6095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaik, S.; Ranjan, A.; Tiwari, S.K.; Hussain, A.; Nandanwar, N.; Kumar, N.; Jadhav, S.; Semmler, T.; Baddam, R.; Islam, M.A.; et al. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. MBio 2017, 8, e01596-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.; Ewers, C.; Nandanwar, N.; Guenther, S.; Jadhav, S.; Wieler, L.H.; Ahmed, N. Multiresistant Uropathogenic Escherichia coli from a Region in India Where Urinary Tract Infections Are Endemic: Genotypic and Phenotypic Characteristics of Sequence Type 131 Isolates of the CTX-M-15 Extended-Spectrum- -Lactamase-Producing Lineage. Antimicrob. Agents Chemother. 2012, 56, 6358–6365. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, S.; Hussain, A.; Devi, S.; Kumar, A.; Parveen, S.; Gandham, N.; Wieler, L.H.; Ewers, C.; Ahmed, N. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenic Escherichia coli from a semi urban locality in India. PLoS ONE 2011, 6, e18063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. 2013, 303, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef] [Green Version]
- Franz, E.; Veenman, C.; van Hoek, A.H.A.M.; Husman, A.D.R.; Blaak, H. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater. Sci. Rep. 2015, 5, 14372. [Google Scholar] [CrossRef] [Green Version]
- Jee, Y.; Carlson, J.; Rafai, E.; Musonda, K.; Huong, T.T.G.; Daza, P.; Sattayawuthipong, W.; Yoon, T. Antimicrobial resistance: A threat to global health. Lancet. Infect. Dis. 2018, 18, 939–940. [Google Scholar] [CrossRef]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014, 20, 380–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Rabbi, M.B.; Sultana, S. Antibiotic resistance in Bangladesh: A systematic review. Int. J. Infect. Dis. 2019, 80, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Campos, A.C.C.; Andrade, N.L.; Ferdous, M.; Chlebowicz, M.A.; Santos, C.C.; Correal, J.C.D.; Lo Ten Foe, J.R.; Rosa, A.C.P.; Damasco, P.V.; Friedrich, A.W.; et al. Comprehensive Molecular Characterization of Escherichia coli Isolates from Urine Samples of Hospitalized Patients in Rio de Janeiro, Brazil. Front. Microbiol. 2018, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Khairy, R.M.; Mohamed, E.S.; Ghany, H.M.A.; Abdelrahim, S.S. Phylogenic classification and virulence genes profiles of uropathogenic E. coli and diarrhegenic E. coli strains isolated from community acquired infections. PLoS ONE 2019, 14, e0222441. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Castillo, F.Y.; Moreno-Flores, A.C.; Avelar-González, F.J.; Márquez-Díaz, F.; Harel, J.; Guerrero-Barrera, A.L. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: Cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 34. [Google Scholar] [CrossRef]
- Doumith, M.; Day, M.; Ciesielczuk, H.; Hope, R.; Underwood, A.; Reynolds, R.; Wain, J.; Livermore, D.M.; Woodford, N. Rapid identification of major Escherichia coli sequence types causing urinary tract and bloodstream infections. J. Clin. Microbiol. 2015, 53, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Manges, A.R.; Tabor, H.; Tellis, P.; Vincent, C.; Tellier, P.P. Endemic and epidemic lineages of Escherichia coli that cause urinary tract infections. Emerg. Infect. Dis. 2008, 14, 1575–1583. [Google Scholar] [CrossRef]
- Stephens, C.M.; Adams-Sapper, S.; Sekhon, M.; Johnson, J.R.; Riley, L.W. Genomic Analysis of Factors Associated with Low Prevalence of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli Sequence Type 95 Strains. mSphere 2017, 2, e00390-16. [Google Scholar] [CrossRef] [Green Version]
- Nicolas-Chanoine, M.H.; Bertrand, X.; Madec, J.Y. Escherichia coli st131, an intriguing clonal group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [Green Version]
- Hawkey, P.M. Prevalence and clonality of extended-spectrum β-lactamases in Asia. Clin. Microbiol. Infect. 2008, 14, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudinha, T.; Johnson, J.R.; Andrew, S.D.; Kong, F.; Anderson, P.; Gilbert, G.L. Escherichia coli sequence type 131 as a prominent cause of antibiotic resistance among urinary Escherichia coli isolates from reproductive-age women. J. Clin. Microbiol. 2013, 51, 3270–3276. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, G.V.; Baird, A.M.G.; Karlowsky, J.A.; Master, R.N.; Bordon, J.M. Nitrofurantoin retains antimicrobial activity against multidrug-resistant urinary escherichia coli from US outpatients. J. Antimicrob. Chemother. 2014, 69, 3259–3262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjan, A.; Shaik, S.; Mondal, A.; Nandanwar, N.; Hussain, A.; Semmler, T.; Kumar, N.; Tiwari, S.; Jadhav, S.; Wieler, L.H.; et al. Molecular epidemiology and genome dynamics of New Delhi metallo-beta-lactamase (NDM) producing extraintestinal pathogenic E. coli (ExPEC) strains from India. Antimicrob. Agents Chemother. 2016, 60, 6795–6805. [Google Scholar] [CrossRef] [Green Version]
- Malchione, M.D.; Torres, L.M.; Hartley, D.M.; Koch, M.; Goodman, J.L. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges. Int. J. Antimicrob. Agents 2019, 54, 381–399. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Hsia, Y.; Sharland, M.; Heath, P.T. Systematic review of carbapenem-resistant Enterobacteriaceae causing neonatal sepsis in China. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Suresh, A.; Ranjan, A.; Patil, S.; Hussain, A.; Shaik, S.; Alam, M.; Baddam, R.; Lothar, W.; Ahmed, N. Molecular genetic and functional analysis of pks-harboring, extra-intestinal pathogenic Escherichia coli from India. Front. Microbiol. 2018, 9, 2631. [Google Scholar] [CrossRef]
- Grohs, P.; Tillecovidin, B.; Caumont-Prim, A.; Carbonnelle, E.; Day, N.; Podglajen, I.; Gutmann, L. Comparison of five media for detection of extended-spectrum Beta-lactamase by use of the wasp instrument for automated specimen processing. J. Clin. Microbiol. 2013, 51, 2713–2716. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Toma, C.; Lu, Y.; Higa, N.; Nakasone, N.; Chinen, I.; Baschkier, A.; Rivas, M.; Iwanaga, M. Multiplex PCR assay for identification of human diarrheagenic Escherichia coli. J. Clin. Microbiol. 2003, 41, 2669–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Stell, A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotic Class | Antibiotics | No. of Strains Tested | No. of Resistant Strains (%) | No. of Sensitive Strains (%) |
---|---|---|---|---|
Aminopenicillin/β lactam | Ampicillin | 128 | 107 (84) | 21 (16) |
β lactam/β lactamase inhibitor | Amoxiclav | 128 | 70 (55) | 58 (45) |
Piperacillin-Tazobactam | 128 | 20 (16) | 108 (84) | |
Aminoglycoside | Gentamicin | 128 | 34 (27) | 94 (73) |
Amikacin | 128 | 7 (5) | 121 (95) | |
Sulfonamide | Cotrimoxazole | 128 | 76 (59) | 52 (41) |
Quinolone/Fluoroquinolone | Nalidixic Acid | 125 | 104 (83) | 21 (17) |
Ciprofloxacin | 127 | 78 (61) | 49 (39) | |
Nitrofuran | Nitrofurantoin | 104 | 11 (11) | 93 (89) |
Cephalosporin | Cefuroxime | 127 | 82 (65) | 45 (35) |
Ceftriaxone | 125 | 77 (62) | 48 (38) | |
Ceftazidime | 128 | 66 (52) | 62 (48) | |
Cefixime | 128 | 85 (66) | 43 (34) | |
Cefepime | 127 | 59 (46) | 68 (54) | |
Carbapenem | Imipenem | 128 | 11 (9) | 117 (91) |
Meropenem | 126 | 8 (6) | 118 (94) |
Characteristics (Overall Positives n, %) | Gene | No. of Positives (%) | |
---|---|---|---|
Antibiotic Resistance | ESBL (84, 66%) | blaCTX-M-15 | 66 (52) |
blaCTX-M gp1 | 66 (52) | ||
blaCTX-M gp2 | 1 (1) | ||
blaCTX-M gp9 | 4 (3) | ||
blaTEM | 26 (20) | ||
blaOXA-1 | 22 (17) | ||
Carbapenem (9, 7%) | blaNDM-1 | 6 (5) | |
blaIMP | 1 (1) | ||
blaVIM-1 | 0 | ||
blaKPC-2 | 0 | ||
blaOXA-48 | 2 (2) | ||
Phylogenetic Groups | A | 6 (5) | |
B1 | 21 (16) | ||
B2 | 59 (46) | ||
C | 9 (7) | ||
D | 13 (10) | ||
E | 2 (2) | ||
F | 11 (9) | ||
Unknown group | 7 (5) | ||
Sequence types (48, 37%) | ST-69 | 5 (4) | |
ST-73 | 4 (3) | ||
ST-95 | 11 (9) | ||
ST-131 | 28 (22) | ||
Pathotypes | ExPEC (52, 41%) | afa | 7 (5) |
hlyD | 31 (24) | ||
iutA | 79 (62) | ||
focG | 4 (3) | ||
kpsM II | 75 (59) | ||
papA | 50 (39) | ||
sfaS | 4 (3) | ||
EAEC (3, 2%) | aggR | 1 (1) | |
CVD432 | 3 (2) | ||
aspU | 2 (2) | ||
ETEC (11, 9%) | elt | 10 (8) | |
est | 2 (2) | ||
EIEC | ipaH | 0 | |
EHEC | stx | 0 | |
EPEC | eae | 0 | |
Class 1 integron (27, 21%) | intl1 | 27 (21) | |
Plasmid-replicon types (70, 55%) | FIA | 70 (55) | |
FIB | 70 (55) | ||
pks island (11, 9%) | clbA | 11 (9) | |
clbQ | 11 (9) |
Phylogroup | ESBL Genotype | CR b Genotype | AMR Profile c | No. of Resistant Classes |
---|---|---|---|---|
B1 | ND a | blaNDM-1 | AMP-COT-NIT-CIP-CXM | 4 |
C | blaCTX-M-15, TEM | blaNDM-1 | AMP-GEN-COT-NAL-NIT-CIP-CRO-CXM-AMX-AMC-TZP | 5 |
F | blaCTX-M-15, TEM | blaNDM-1 | AMP-GEN-COT-NAL-CIP-CRO-CAZ-IPM-CXM-AMX-CFM-AMC-MEM-FEP-TZP | 5 |
D | blaCTXM-15, TEM, OXA-1 | blaNDM-1 | AMP-GEN-COT-NAL-CIP-CRO-CAZ-IPM-CXM-AMX-CFM-AMC-MEM-FEP-TZP | 5 |
E | blaCTXM-15, OXA-1 | blaNDM-1 | AMP-NAL-NIT-IP-CRO-CAZ-CXM-CFM-AMC-FEP | 3 |
D | blaCTXM-15 | blaNDM-1 | AMP-GEN-COT-NAL-NIT-CIP-CRO-CAZ-IPM-CXM-AMX-CFM-AMC-MEM-FEP-TZP | 6 |
ND a | blaCTXM-15 | blaIMP | AMP-CRO-CXM-CFM-FEP | 1 |
A | blaCTXM-15, TEM, OXA-1 | blaOXA-48 | AMP-COT-NAL-CIP-CRO-CAZ-CXM-AMX-CFM-AMC-FEP-TZP | 3 |
B1 | blaCTXM-15 | blaOXA-48 | AMP-GEN-COT-NAL-NIT-CIP-CRO-CAZ-IMP-CXM-AMK-CFM-AMC-MEM-FEP-TZP | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazumder, R.; Abdullah, A.; Ahmed, D.; Hussain, A. High Prevalence of blaCTX-M-15 Gene among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Causing Extraintestinal Infections in Bangladesh. Antibiotics 2020, 9, 796. https://doi.org/10.3390/antibiotics9110796
Mazumder R, Abdullah A, Ahmed D, Hussain A. High Prevalence of blaCTX-M-15 Gene among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Causing Extraintestinal Infections in Bangladesh. Antibiotics. 2020; 9(11):796. https://doi.org/10.3390/antibiotics9110796
Chicago/Turabian StyleMazumder, Razib, Ahmed Abdullah, Dilruba Ahmed, and Arif Hussain. 2020. "High Prevalence of blaCTX-M-15 Gene among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Causing Extraintestinal Infections in Bangladesh" Antibiotics 9, no. 11: 796. https://doi.org/10.3390/antibiotics9110796
APA StyleMazumder, R., Abdullah, A., Ahmed, D., & Hussain, A. (2020). High Prevalence of blaCTX-M-15 Gene among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Causing Extraintestinal Infections in Bangladesh. Antibiotics, 9(11), 796. https://doi.org/10.3390/antibiotics9110796