Distinct Effectiveness of Oritavancin against Tolerance-Induced Staphylococcus aureus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Strain Characterization, Cultivation Conditions and Antibiotic Selection
4.2. Study Design
4.3. Induction of Antimicrobial Tolerance
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Vital signs: Epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections—United States. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
- Britt, N.S.; Patel, N.; Shireman, T.I.; El Atrouni, W.I.; Horvat, R.T.; Steed, M.E. Relationship between vancomycin tolerance and clinical outcomes in Staphylococcus aureus bacteraemia. J. Antimicrob. Chemother. 2017, 72, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaban, N.Q.; Merrin, J.; Chait, R.; Kowalik, L.; Seibler, S. Bacterial persistence as a phenotypic switch. Science 2004, 305, 1622–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauner, A.; Fridman, O.; Gefen, O.; Balaban, N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016, 14, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Bayer, A.S.; Cheung, A.; Lu, L.; Abdelhady, W.; Donegan, N.P.; Hong, J.; Yeaman, M.R.; Xiong, Y.Q. The stringent response contributes to persistent methicillin-resistant Staphylococcus aureus endovascular infection through the purine biosynthetic pathway. J. Infect. Dis. 2020, 222, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Geiger, T.; Francois, P.; Liebeke, M.; Fraunholz, M.; Goerke, C.; Krismer, B.; Schrenzel, J.; Lalk, M.; Wolz, C. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog. 2012, 8, e1003016. [Google Scholar] [CrossRef] [PubMed]
- Geiger, T.; Kästle, B.; Gratani, F.L.; Goerke, C.; Wolz, C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J. Bacteriol. 2014, 196, 894–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiss, S.; Pané-Farée, J.; Fuchs, S.; François, P.; Liebeke, M.; Schrenzel, J.; Lindequist, U.; Lalk, M.; Wolz, C.; Hecker, M.; et al. Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob. Agents Chemther. 2012, 56, 787–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girgis, H.S.; Harris, K.; Tavazoie, S. Large mutational target size for rapid emergence of bacterial persistence. Proc. Natl. Acad. Sci. USA 2012, 109, 12740–12745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Abdelhady, W.; Donegan, N.P.; Seidl, K.; Cheung, A.; Zhou, Y.; Yeaman, M.R.; Bayer, A.S.; Xiong, Y.Q. Role of purine biosynthesis in persistent methicillin-resistant Staphylococcus aureus infection. J. Infect. Dis. 2018, 218, 1367–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Yeaman, M.R.; Bayer, A.S.; Xiong, Y.Q. Phenotypic and genotypic characteristics of methicillin-resistant Staphylococcus aureus (MRSA) related to persistent endovascular infection. Antibiotics 2019, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belley, A.; Neesham-Grenon, E.; McKay, G.; Ahrin, F.F.; Harris, R.; Beveridge, T.; Parr, T.R.; Moeck, G. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob. Agents Chemother. 2009, 53, 918–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belley, A.; Seguin, D.L.; Arhin, F.; Moeck, G. Comparative in vitro activities of oritavancin, dalbavancin and vancomycin against methicillin-resistant Staphylococcus aureus isolates in a nondividing state. Antimicrob. Agents Chemother. 2016, 60, 4342–4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascio, C.T.M.; Alder, J.D.; Silverman, J.A. Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob. Agents Chemother. 2007, 51, 4255–4260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diep, B.A.; Gill, S.R.; Chang, R.F.; Phan, T.H.; Chen, J.H.; Davidson, M.G.; Lin, F.; Lin, J.; Carleton, H.A.; Mongodin, E.F.; et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 2006, 367, 731–739. [Google Scholar] [CrossRef]
- Otero, L.H.; Rojas-Altuve, A.; Llarrull, L.I.; Carrasco-López, C.; Kumarasiri, M.; Lastochkin, E.; Fishovitz, J.; Dawley, M.; Hesek, D.; Lee, M.; et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl. Acad. Sci. USA 2013, 110, 16808–16813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; CLSI document M100-ED30; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
Strain Name | MDK (Uninduced, h) | MDK (Low Induction, h) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPT | DAL | DAP | ORI | TLV | VAN | CPT | DAL | DAP | ORI | TLV | VAN | |
29213 | — | 19 ± 0.6 | 1 ± 0.0 | 1 ± 0.0 | 37 ± 0.4 | 13 ± 0.6 | — | 24 ± 0.1 * | 47 ± 1.5 * | 2 ± 0.5 | 48 ± 0.0 * | 21 ± 1.0 * |
BSN10 | 39 ± 0.8 | — | 2 ± 0.0 | 1 ± 0.1 | 38 ± 5.9 | 22 ± 0.4 | — | — | 13 ± 1.1 * | 1 ± 0.2 | 44 ± 6.1 | — |
BSN11 | 28 ± 1.0 | 35 ± 4.0 | 1 ± 0.0 | 1 ± 0.0 | 14 ± 0.2 | 18 ± 3.9 | 36 ± 11.0 | 46 ± 2.9 * | 1 ± 0.1 | 1 ± 0.0 | 44 ± 6.4 * | 37 ± 9.6 |
BSN12 | — | 34 ± 3.5 | 1 ± 0.0 | 1 ± 0.0 | 17 ± 4.7 | 20 ± 0.6 | — | 40 ± 4.5 | 2 ± 0.0 * | 1 ± 0.0 | 13 ± 2.9 | 36 ± 2.7 * |
BSN13 | 39 ± 5.1 | 17 ± 0.8 | 1 ± 0.0 | 1 ± 0.0 | 19 ± 1.4 | 24 ± 5.5 | 47 ± 1.3 | 18 ± 1.0 | 1 ± 0.1 | 1 ± 0.0 | 22 ± 6.0 | 26 ± 8.2 |
Strain Name | MDK (Uninduced, h) | MDK (High Induction, h) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPT | DAL | DAP | ORI | TLV | VAN | CPT | DAL | DAP | ORI | TLV | VAN | |
29213 | — | 19 ± 0.6 | 1 ± 0.0 | 1 ± 0.0 | 37 ± 0.4 | 13 ± 0.6 | — | — | — | 5 ± 0.4 * | — | — |
BSN10 | 39 ± 0.8 | — | 2 ± 0.0 | 1 ± 0.1 | 38 ± 5.9 | 22 ± 0.4 | — | — | — | 27 ± 6.5 * | — | — |
BSN11 | 28 ± 1.0 | 35 ± 4.0 | 1 ± 0.0 | 1 ± 0.0 | 14 ± 0.2 | 18 ± 3.9 | — | — | 40 ± 2.2 * | 1 ± 0.1 | — | — |
BSN12 | — | 34 ± 3.5 | 1 ± 0.0 | 1 ± 0.0 | 17 ± 4.7 | 20 ± 0.6 | — | — | — | 4 ± 1.6 | — | — |
BSN13 | 39 ± 5.1 | 17 ± 0.8 | 1 ± 0.0 | 1 ± 0.0 | 19 ± 1.4 | 24 ± 5.5 | — | — | 41 ± 10.2 * | 2 ± 0.9 | — | — |
Strain Name | Source | Genetic Characterization | Minimum Inhibitory Concentration (mg/L) | |||||
---|---|---|---|---|---|---|---|---|
CPT | DAL | DAP | ORI | TLV | VAN | |||
29213 | ATCC | ST5-MSSA spa t010 agr2 | 0.25 | 0.06 | 0.25 | 0.06 | 0.06 | 1.0 |
BSN10 | This Study | ST45-MSSA spa t065 agr1 | 0.19 | 0.03 | 0.19 | 0.06 | 0.13 | 1.0 |
BSN11 | This Study | ST15-MSSA spa t10135 agr2 | 0.25 | 0.03 | 0.25 | 0.13 | 0.06 | 1.0 |
BSN12 | This Study | ST5-MRSA-IVg spa t688 agr2 | 0.38 | 0.03 | 0.13 | 0.06 | 0.06 | 1.0 |
BSN13 | This Study | ST97-MSSA spa t224 agr1 | 0.19 | 0.05 | 0.13 | 0.13 | 0.13 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berti, A.D.; Harven, L.T.; Bingley, V. Distinct Effectiveness of Oritavancin against Tolerance-Induced Staphylococcus aureus. Antibiotics 2020, 9, 789. https://doi.org/10.3390/antibiotics9110789
Berti AD, Harven LT, Bingley V. Distinct Effectiveness of Oritavancin against Tolerance-Induced Staphylococcus aureus. Antibiotics. 2020; 9(11):789. https://doi.org/10.3390/antibiotics9110789
Chicago/Turabian StyleBerti, Andrew D., Lauren T. Harven, and Victoria Bingley. 2020. "Distinct Effectiveness of Oritavancin against Tolerance-Induced Staphylococcus aureus" Antibiotics 9, no. 11: 789. https://doi.org/10.3390/antibiotics9110789
APA StyleBerti, A. D., Harven, L. T., & Bingley, V. (2020). Distinct Effectiveness of Oritavancin against Tolerance-Induced Staphylococcus aureus. Antibiotics, 9(11), 789. https://doi.org/10.3390/antibiotics9110789