Combination Therapy with Aminoglycoside in Bacteremiasdue to ESBL-Producing Enterobacteriaceae in ICU
Abstract
:1. Introduction
2. Patients and Methods
2.1. Setting and Study Population
2.2. Data Collection and Definitions
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Data
3.2. Microbiological Data
3.3. Empirical and Definitive Antibiotherapy
3.4. Aminoglycoside Use and Impact
3.5. Risk Factors for Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rodríguez-Baño, J.; Navarro, M.D.; Romero, L.; Muniain, M.A.; de Cueto, M.; Ríos, M.J.; Hernandez, J.R.; Pascual, A. Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: A new clinical challenge. Clin. Infect. Dis. 2006, 43, 1407–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Sanguinetti, M.; Montuori, E.; Trecarichi, E.M.; Posteraro, B.; Fiori, B.; Citton, R.; D’Inzeo, T.; Fadda, G.; Cauda, R.; et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007, 51, 1987–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of carbapenemase-producing enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Bano, J.; Navarro, M.D.; Retamar, P.; Picon, E.; Pascual, A.; The Extended-Spectrum Beta-Lactamases-Red Espanola de InvestigacionenPatologiaInfecciosa/Grupo de Estudio de InfeccionHospitalaria Group. ß-Lactam/ß-Lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum ß-lactamase-producing Escherichia coli: A post hoc analysis of prospective cohorts. Clin. Infect. Dis. 2012, 54, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Tansarli, G.S.; Rafailidis, P.I.; Falagas, M.E. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to enterobacteriaceae producing extended-spectrum ß-lactamases: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2012, 67, 2793–2803. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E. Coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: A randomized clinical trial. JAMA 2018, 320, 984–989. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Lador, A.; Grozinsky-Glasberg, S.; Leibovici, L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst. Rev. 2014, 2014, CD003344. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST 2012). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 2.0. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST-files/Breakpoint-tables/Breakpoint-table-v-2.0-120221.pdf (accessed on 1 August 2020).
- McCabe, W.R.; Jackson, C.G. Gram-negative bacteremia: Etiology and ecology. Arch. Intern. Med. 1962, 110, 847–855. [Google Scholar] [CrossRef]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfonction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Fischer, C.J.; Clemmer, T.P.; Slotman, G.J.; Metz, C.A.; Balk, R.A. The methylprednisolone severe sepsis study group. Sepsis syndrome: A valid clinical entity. Crit. Care Med. 1989, 17, 389–393. [Google Scholar] [CrossRef]
- Weiss, E.; Zahar, J.R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.F.; et al. Elaboration of a consensual definition of de-escalation allowing a ranking of ß-lactams. Clin. Microbiol. Infect. 2015, 21, 649.e1–649.e10. [Google Scholar]
- Denis, B.; Lafaurie, M.; Donay, J.L.; Fontaine, J.P.; Oksenhendler, E.; Raffoux, E.; Hennequin, C.; Allez, M.; Socie, G.; Maziers, N.; et al. Prevalence, risk factors, and impact on clinical outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteraemia: A five-year study. Int. J. Infect. Dis. 2015, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Falcone, M.; Gutierrez-Gutierrez, B.; Calbo, E.; Almirante, B.; Viale, P.L.; Oliver, A.; Ruiz-Garbajosa, P.; Gasch, O.; Gozalo, M.; et al. Predictors of outcome in patients with severe sepsis or septic shock due to extended-spectrum B-lactamase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2018, 52, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbier, F.; Pommier, C.; Essaied, W.; Garrouste-Orgeas, M.; Schwebel, C.; Ruckly, S.; Dumenil, A.S.; Lemiale, V.; Mourvillier, B.; Clec’h, C.; et al. Colonization and infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in ICU patients: What impact on outcomes and carbapenem exposure? J. Antimicrob. Chemother. 2016, 71, 1088–1097. [Google Scholar] [CrossRef] [Green Version]
- Robineau, O.; Robert, J.; Rabaud, C.; Bedos, J.P.; Varon, E.; Péan, Y.; Gauzit, R.; Alfandari, S. Management and outcome of bloodstream infections: A prospective survey in 121 French hospitals (SPA-BACT Survey). Infect. Drug Resist. 2018, 11, 1359–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Zarychanski, R.; Light, B.; Parrillo, J.; Maki, D.; Simon, D.; Laporta, D.; Lapinsky, S.; Ellis, P.; Mirzanejad, Y.; et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis. Crit. Care Med. 2010, 38, 1773–1785. [Google Scholar] [CrossRef] [Green Version]
- Leibovici, L.; Vidal, L.; Paul, M. Aminoglycoside drugs in clinical practice: An evidence-based approach. J. Antimicrob. Chemother. 2009, 63, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.; Paul, M.; Elphick, H.; Leibovici, L. Clinical implications of β-lactam-aminoglycoside synergism: Systematic review of randomised trials. Int. J. Antimicrob. Agents 2011, 37, 491–503. [Google Scholar] [CrossRef]
- Alfandari, S.; Boussekey, N. Beta-lactams with or without aminoglycosides. Clin. Infect. Dis. 2005, 41, 1542–1543. [Google Scholar] [CrossRef] [Green Version]
- Delannoy, P.Y.; Boussekey, N.; Devos, P.; Alfandari, S.; Turbelin, C.; Chiche, A.; Meybeck, A.; Georges, H.; Leroy, O. Impact of combination therapy with aminoglycosides on the outcome of ICU-acquired bacteraemias. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2293–2299. [Google Scholar] [CrossRef]
- Palacios-Baena, Z.R.; Gutierrez-Gutierrez, B.; Calbo, E.; Almirante, B.; Viale, P.; Oliver, A.; Pintado, V.; Gasch, O.; Martinez-Martinez, L.; Pitout, J.; et al. Empiric therapy with carbapenem-sparing regimens for bloodstream infections due to extended-spectrum β-lactamase-producing enterobacteriaceae: Results from the INCREMENT cohort. Clin. Infect. Dis. 2017, 65, 1615–1623. [Google Scholar] [CrossRef]
- Ibrahim, E.H.; Sherman, G.; Ward, S.; Fraser, V.J.; Kollef, M.H. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000, 118, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Shani, V.; Muchtar, E.; Kariv, G.; Robenshtok, E.; Leibovici, L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob. Agents Chemother. 2010, 54, 4851–4863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrie, C.; Garrouste-Orgeas, M.; Ibn Essaied, W.; Schewebel, C.; Darmon, M.; Mourvillier, B.; Ruckly, S.; Dumenil, A.S.; Kallel, H.; Argaud, L.; et al. Attributable Mortality of ICU-acquired Bloodstream Infections: Impact of the Source, Causative Micro-Organism, Resistance Profile and Antimicrobial Therapy. J. Infect. 2017, 74, 131–141. [Google Scholar] [CrossRef]
- Palacios-Baena, Z.R.; Gutierrez-Gutierrez, B.; De Cueto, M.; Viale, P.; Venditti, M.; Hernandez-Torres, A.; Oliver, A.; Martinez-Martinez, L.; Calbo, E.; Pintado, V.; et al. Development and validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum-B-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 72, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving sepsis campaign: International guidelines for management of sepsisand septic shock. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Craig, W.A. Optimizing aminoglycosides use. Crit. Care Clin. 2011, 27, 107–121. [Google Scholar] [CrossRef]
- Agence Nationale de Sécurité du Médicament et des Produits de Santé. Mise au Point sur le bon Usage des Aminosides Administrés par Voie Injectable: Gentamicine, Tobramycine, Nétilmicine, Amikacine; Agence Nationale de Sécurité du Médicament et des Produits de Santé: Anatole, France, 2011. [Google Scholar]
- On Behalf of the Société de Pathologie Infectieuse de Langue Française (SPILF), the Observatoire National de l’Epidémiologie de la Résistance Bactérienne aux Antibiotiques (ONERBA) and the Surveillance de la Prescription des Antibiotiques (SPA) Group; Robert, J.; Péan, Y.; Alfandari, S.; Bru, J.P.; Bedos, J.P.; Rabaud, C.; Gauzit, R. Application of guidelines for aminoglycosides use in French hospitals in 2013–2014. Eur. J. Clin. Microb. Infect. Dis. 2017, 36, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Ong, D.S.Y.; Frencken, J.F.; Klein Klouwenberg, P.M.C.; Juffermans, N.; van der Poll, T.; Bonten, M.J.M.; Cremer, O.L.; MARS Consortium. Short-course adjunctive gentamicin as empirical therapy in patients with severe sepsis and septic shock: A prospective observational cohort study. Clin. Infect. Dis. 2017, 64, 1731–1736. [Google Scholar] [CrossRef]
- Picard, W.; Bazin, F.; Clouzeau, B.; Bui, H.N.; Soulat, M.; Guilhon, E.; Vargas, F.; Hilbert, G.; Bouchet, S.; Gruson, D.; et al. Propensity based study of aminoglycoside nephrotoxicity in patients with severe sepsis or septic shock. Antimicrob. Agents Chemother. 2014, 58, 7468–7474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobussen, M.; De Kort, J.M.L.; Dennert, R.M.; Lowe, S.H.; Stassen, P.M. No increased risk of acute kidney injury after a single dose of gentamicin in patients with sepsis. Infect. Dis. 2016, 48, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Taccone, F.S.; Laterre, P.F.; Spapen, H.; Dugernier, T.; Dellatre, I.; Layeux, B.; De Backer, D.; Wittebole, X.; Wallemacq, P.; Vincent, J.L.; et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit. Care 2010, 14, R53. [Google Scholar] [CrossRef] [Green Version]
- Duszynska, W.; Taccone, F.S.; Hurkacz, M.; Kowalska-Krochmal, B.; Wiela-Hojenska, A.; Kubler, A. Therapeutic drug monitoring of amikacin in septic patients. Crit. Care 2013, 17, R165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Without Aminoglycoside n = 138 | With Aminoglycoside n = 169 | p |
---|---|---|---|
Male sex, n (%) | 95 (68.8) | 109 (64.5) | 0.496 |
Age (years) | 63 (54–70) | 62 (55–70) | 0.775 |
McCabe3 2 | 98 (71) | 117 (69) | 0.840 |
SOFA score | 7 (4.25–10.0) | 8 (5–11) | 0.154 |
Comorbidity | |||
- Diabetes | 42 (30.4) | 49 (29.2) | 0.908 |
- Renal insufficiency | 16 (11.6) | 18 (10.7) | 0.937 |
Immunodeficiency | 49 (35.5) | 83 (49.1) | 0.020 |
- Immunosuppressive therapy in the last 3 months | 7 (5.1) | 25 (14.8) | 0.010 |
- Transplantation | 6 (4.3) | 16 (9.5) | 0.132 |
- Solid cancer | 22 (15.9) | 22 (13) | 0.573 |
- Hematological malignancy | 14 (10.1) | 20 (11.8) | 0.775 |
Admission | |||
- Medical | 110 (79.7) | 145 (85.8) | 0.207 |
- Scheduled surgical | 2 (1.4) | 0 (0) | 0.201 |
- Unscheduled surgical | 14 (10.1) | 20 (11.8) | 0.775 |
Community acquired infection | 42 (30.4) | 51 (30.2) | 0.999 |
Origin of the infection | |||
- Urinary tract | 13 (9.4) | 25 (14.8) | 0.202 |
- Intra-abdominal infection | 24 (17.4) | 29 (17.2) | 0.999 |
- Catheter related infection | 32 (23.2) | 30 (17.8) | 0.315 |
- Respiratory tract | 53 (38.4) | 75 (44,4) | 0.313 |
- Bone infection | 5 (3.6) | 0 (0) | 0.018 |
- other | 10 | 6 | 0.308 |
Etiology | |||
- Klebsiella sp. | 87 (63) | 97 (57.4) | |
- Enterobacter sp. | 30 (21.7) | 31 (18.3) | |
- E. coli | 19 (13.8) | 33 (19.5) | |
- Other § | 2 (1.5) | 8 | |
polymicrobial infection | 25 (1.1) | 30 (17.8) | 0.999 |
Antibiotics | Without Aminoglycoside n = 138 | With Aminoglycoside n = 169 | p |
---|---|---|---|
n (%) | n (%) | ||
Non carbapenem-betalactams | 50 (36) | 58 (34) | 0.770 |
- amoxicillin-clavulanate | 2 (1.4) | 0 (0) | |
- ticarcillin-clavulanate | 1 (0.7) | 0 (0) | |
- piperacillin-tazobactam | 29 (21) | 39 (23) | |
- cefotaxime/ceftriaxone | 5 (3.6) | 6 (3.6) | |
- cefepime | 4 (2.9) | 3 (1.8) | |
- ceftazidime | 5 (3.6) | 8 (4.8) | |
- ceftazidime-avibactam | 1 (0.7) | 0 (0) | |
- ceftolozane-tazobactam | 1 (0.7) | 0 (0) | |
- other | 2 (1.4) | 1 (0.6) | |
Carbapenem antibiotics | 78 (56.5) | 106 (64) | 0.546 |
- imipenem | 58 (42) | 79 (47) | |
- meropenem | 16 (11.6) | 18 (11) | |
- ertapenem | 4 (2.9) | 8 (4.7) | |
- doripenem | 0 (0) | 1 (0.6) | |
Fluoroquinolone | 35 (25.3) | 6 (3.6) | <0.001 |
- ofloxacin/levofloxacin | 6 (4.3) | 2 (1.2) | |
- ciprofloxacin | 29 (21) | 4 (2.4) | |
Anti-cocci Gram positive | 4 (2.9) | 8 (4.7) | 0.560 |
- vancomycin | 2 (1.4) | 6 (3.6) | |
- teicoplanin | 1 (0.7) | 2 (1.2) | |
- daptomycin | 1 (0.7) | 0 (0) | |
Other | 36 (26) | 11 (6.5) | <0.001 |
- monobactam | 1 (0.7) | 1 (0.6) | |
- trimethoprim-sulfamethoxazole | 2 (1.4) | 0 (0) | |
- metronidazole | 2 (1.4) | 2 (1.2) | |
- colistin | 31 (22.5) | 8 (4.7) |
Outcome | Without Aminoglycoside n = 138 | With Aminoglycoside n = 169 | p |
---|---|---|---|
n (%) | n (%) | ||
Complications: | |||
Septic shock | 59 (42.8) | 96 (56.8) | 0.020 |
Acute respiratory distress syndrome (ARDS) | 27 (19.6) | 33 (19.5) | 1.000 |
Acute renal failure | 33 (23.9) | 35 (20.7) | 0.593 |
Disseminated intravascular coagulation (DIC) | 15 (10.9) | 11 (6.5) | 0.246 |
Bacteremia relapse | 15 (11.1) | 13 (7.9) | 0.448 |
Colonization with multi-drug resistant bacteria | 39 (29.5) | 47 (28.3) | 0.917 |
Colonization with carbapenem-resistant enterobacteriaceae (CRE) | 4 (2.9) | 2 (1.2) | 0.414 |
fungemia | 3 (2.1) | 3 (1.8) | 1.000 |
Clostridium difficile colitis | 2 (1.4) | 2 (1.2) | 1.000 |
Evolution: | |||
SOFA day 1 > 7 | 62 (44.9) | 89 (53) | 0.487 |
Vasopressors > 48 h | 31 (23) | 46 (28) | 0.24 |
Mechanical ventilation at day 30 | 22 (16) | 22 (13) | 0.55 |
Mortality at day 30 | 59 (42.8) | 66 (39.3) | 0.545 |
Death in ICU | 63 (45.7) | 73 (43.2) | 0.752 |
- Male sex | 48% | 42% | 0.206 |
- Age ≥ 70 years | 58% | 46% | 0.291 |
- Immunodepression | 54% | 58% | 0.820 |
- Hospital acquired | 54% | 47% | 0.336 |
- Non urinary tract infection | 51% | 44% | 0.274 |
- SOFA ≥ 5 | 48% | 45% | 0.699 |
- McCabe ≥ 2 | 60% | 54% | 0.402 |
Variables | Bivariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR | p | OR | p | |
Aminoglycoside | 0.84 [0.53–1.34] | 0.47 | 1.05 [0.54–2.06] | 0.89 |
Male sex | 0.91 [0.56–1.46] | 0.69 | 0.50 [0.25–1.01] | 0.05 |
Age (years) (reference:age <55) | ||||
55 ≤ Age < 62 | 1.75 [0.90–3.39] | 0.10 | 1.64 [0.67–4.03] | 0.28 |
62 ≤ Age < 70 | 1.55 [0.80–2.97] | 0.19 | 1.49 [0.60–3.65] | 0.39 |
Age ≥ 70 | 2.78 [1.44–5.37] | 0.00 | 2.67 [1.09–6.54] | 0.03 |
Medical admission | 0.62 [0.33–1.16] | 0.13 | 0.72 [0.28–1.88] | 0.51 |
Respiratory insufficiency | 0.97 [0.57–1.63] | 0.90 | ||
Chronic liver insufficiency | 0.94 [0.41–2.16] | 0.88 | ||
Cardiac insufficiency | 2.16 [1.07–4.37] | 0.03 | 2.16 [0.78–5.98] | 0.14 |
Diabetes | 1.04 [0.64–1.68] | 0.89 | ||
Solid cancer | 1.27 [0.67–2.42] | 0.46 | ||
Transplantation | 3.79 [1.52–9.40] | 0.004 | 5.20 [1.4–19.35] | 0.01 |
Source (reference:urinary tract) | ||||
Respiratory tract | 1.93 [0.88–4.23] | 0.10 | ||
Catheter related infection | 0.91 [0.37–2.20] | 0.83 | ||
Intra-abdominal infection | 3.1 [1.27–7.60] | 0.01 | ||
Other | 2.88 [0.93–8.88] | 0.07 | ||
Hospital acquired infection | 3.82 [1.28–11.44] | 0.02 | 8.67 [1.74–43.08] | 0.01 |
SOFA (reference: SOFA < 5) | ||||
5 ≤ SOFA < 7 | 0.92 [0.47–1.79] | 0.80 | 0.54 [0.21–1.42] | 0.21 |
7 ≤ SOFA < 11 | 1.15 [0.65–2.01] | 0.63 | 0.52 [0.23–1.18] | 0.12 |
SOFA ≥ 11 | 2.32 [1.20–4.48] | 0.01 | 1.69 [0.66–4.34] | 0.28 |
Duration of vasopressors (reference: <24 h) | ||||
between 24 and 48 h | 4.21 [2.33–7.58] | <0.001 | 3.02 [1.24–7.31] | 0.01 |
>48 h | 4.09 [2.30–7.27] | <0.001 | 3.61 [1.62–8.02] | 0.002 |
Polymicrobial infection | 1.25 [0.70–2.24] | 0.45 | ||
Active combination therapy | 0.82 [0.50–1.37] | 0.45 | 0.55 [0.28–1.08] | 0.08 |
Initial appropriate antibiotherapy | 1.16 [0.59–2.29] | 0.67 | ||
ARDS | 3.23 [1.81–5.76] | <0.001 | 2.42 [1.14–5.16] | 0.02 |
Acute renal failure | 4.87 [2.72–8.72] | <0.001 | 2.49 [1.14–5.47] | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benetazzo, L.; Delannoy, P.-Y.; Houard, M.; Wallet, F.; Lambiotte, F.; Vachée, A.; Batt, C.; Van Grunderbeeck, N.; Nseir, S.; Robineau, O.; et al. Combination Therapy with Aminoglycoside in Bacteremiasdue to ESBL-Producing Enterobacteriaceae in ICU. Antibiotics 2020, 9, 777. https://doi.org/10.3390/antibiotics9110777
Benetazzo L, Delannoy P-Y, Houard M, Wallet F, Lambiotte F, Vachée A, Batt C, Van Grunderbeeck N, Nseir S, Robineau O, et al. Combination Therapy with Aminoglycoside in Bacteremiasdue to ESBL-Producing Enterobacteriaceae in ICU. Antibiotics. 2020; 9(11):777. https://doi.org/10.3390/antibiotics9110777
Chicago/Turabian StyleBenetazzo, Lucie, Pierre-Yves Delannoy, Marion Houard, Frederic Wallet, Fabien Lambiotte, Anne Vachée, Christian Batt, Nicolas Van Grunderbeeck, Saad Nseir, Olivier Robineau, and et al. 2020. "Combination Therapy with Aminoglycoside in Bacteremiasdue to ESBL-Producing Enterobacteriaceae in ICU" Antibiotics 9, no. 11: 777. https://doi.org/10.3390/antibiotics9110777
APA StyleBenetazzo, L., Delannoy, P. -Y., Houard, M., Wallet, F., Lambiotte, F., Vachée, A., Batt, C., Van Grunderbeeck, N., Nseir, S., Robineau, O., & Meybeck, A. (2020). Combination Therapy with Aminoglycoside in Bacteremiasdue to ESBL-Producing Enterobacteriaceae in ICU. Antibiotics, 9(11), 777. https://doi.org/10.3390/antibiotics9110777