1. Introduction
2. Results
2.1. Origin and Identification of Coagulase-Positive Staphylococcus Isolates
2.2. Antimicrobial Resistance Profiles
2.3. Genomic Characterization of the Methicillin-Resistant Coagulase-Positive Staphylococcus (MRCoPS)
3. Discussion
4. Materials and Methods
4.1. Samples and Isolates
4.2. Bacterial Identification
4.3. Antimicrobial Susceptibility Testing
4.4. Molecular Analysis of Methicillin Resistant CoPS
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Perreten, V.; Kadlec, K.; Schwarz, S.; Gronlund Andersson, U.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: An international multicentre study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Ruscher, C.; Lubke-Becker, A.; Wleklinski, C.G.; Soba, A.; Wieler, L.H.; Walther, B. Prevalence of Methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals and equidaes. Vet. Microbiol. 2009, 136, 197–201. [Google Scholar] [CrossRef]
- Viau, R.; Hujer, A.M.; Hujer, K.M.; Bonomo, R.A.; Jump, R.L. Are Staphylococcus intermedius Infections in Humans Cases of Mistaken Identity? A Case Series and Literature Review. Open Forum Infect. Dis. 2015, 2, ofv110. [Google Scholar] [CrossRef]
- Pires Dos Santos, T.; Damborg, P.; Moodley, A.; Guardabassi, L. Systematic Review on Global Epidemiology of Methicillin-Resistant Staphylococcus pseudintermedius: Inference of Population Structure from Multilocus Sequence Typing Data. Front. Microbiol. 2016, 7, 1599. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Blaiotta, G.; Fusco, V.; Ercolini, D.; Pepe, O.; Coppola, S. Diversity of Staphylococcus species strains based on partial kat (catalase) gene sequences and design of a PCR-restriction fragment length polymorphism assay for identification and differentiation of coagulase-positive species (S. aureus, S. delphini, S. hyicus, S. intermedius, S. pseudintermedius, and S. schleiferi subsp. coagulans). J. Clin. Microbiol. 2010, 48, 192–201. [Google Scholar] [PubMed]
- Kmieciak, W.; Szewczyk, E.M.; Ciszewski, M. Searching for Beta-Haemolysin hlb Gene in Staphylococcus pseudintermedius with Species-Specific Primers. Curr. Microbiol. 2016, 73, 148–152. [Google Scholar] [CrossRef]
- Couto, N.; Belas, A.; Couto, I.; Perreten, V.; Pomba, C. Genetic relatedness, antimicrobial and biocide susceptibility comparative analysis of methicillin-resistant and -susceptible Staphylococcus pseudintermedius from Portugal. Microb. Drug Resist. 2014, 20, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Tian, W.; Lin, D.; Luo, Q.; Zhou, Y.; Yang, T.; Deng, Y.; Liu, Y.H.; Liu, J.H. Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius in pets from South China. Vet. Microbiol. 2012, 160, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanz, E.; Torres, C.; Lozano, C.; Saenz, Y.; Zarazaga, M. Detection and characterization of methicillin-resistant Staphylococcus pseudintermedius in healthy dogs in La Rioja, Spain. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 447–453. [Google Scholar] [CrossRef]
- Gomez-Sanz, E.; Torres, C.; Lozano, C.; Zarazaga, M. High diversity of Staphylococcus aureus and Staphylococcus pseudintermedius lineages and toxigenic traits in healthy pet-owning household members. Underestimating normal household contact? Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 83–94. [Google Scholar] [CrossRef]
- Gomez-Sanz, E.; Torres, C.; Benito, D.; Lozano, C.; Zarazaga, M. Animal and human Staphylococcus aureus associated clonal lineages and high rate of Staphylococcus pseudintermedius novel lineages in Spanish kennel dogs: Predominance of S. aureus ST398. Vet. Microbiol. 2013, 166, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, K.; Schwarz, S.; Perreten, V.; Andersson, U.G.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Molecular analysis of methicillin-resistant Staphylococcus pseudintermedius of feline origin from different European countries and North America. J. Antimicrob. Chemother. 2010, 65, 1826–1828. [Google Scholar] [CrossRef]
- Van Hoovels, L.; Vankeerberghen, A.; Boel, A.; Van Vaerenbergh, K.; De Beenhouwer, H. First case of Staphylococcus pseudintermedius infection in a human. J. Clin. Microbiol. 2006, 44, 4609–4612. [Google Scholar] [CrossRef] [PubMed]
- Limbago, B.M. What’s in a Name? The Impact of Accurate Staphylococcus pseudintermedius Identification on Appropriate Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2016, 54, 516–517. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; van Duijkeren, E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet. Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef]
- Devriese, L.A.; Hermans, K.; Baele, M.; Haesebrouck, F. Staphylococcus pseudintermedius versus Staphylococcus intermedius. Vet. Microbiol. 2009, 133, 206–207. [Google Scholar] [CrossRef]
- Roberson, J.R.; Fox, L.K.; Hancock, D.D.; Besser, T.E. Evaluation of methods for differentiation of coagulase-positive staphylococci. J. Clin. Microbiol. 1992, 30, 3217–3219. [Google Scholar] [CrossRef]
- Riegel, P.; Jesel-Morel, L.; Laventie, B.; Boisset, S.; Vandenesch, F.; Prevost, G. Coagulase-positive Staphylococcus pseudintermedius from animals causing human endocarditis. Int. J. Med. Microbiol. 2011, 301, 237–239. [Google Scholar] [CrossRef]
- Silva, M.B.; Ferreira, F.A.; Garcia, L.N.; Silva-Carvalho, M.C.; Botelho, L.A.; Figueiredo, A.M.; Vieira-da-Motta, O. An evaluation of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of Staphylococcus pseudintermedius isolates from canine infections. J. Vet. Diagn. Invest. 2015, 27, 231–235. [Google Scholar] [CrossRef]
- Decristophoris, P.; Fasola, A.; Benagli, C.; Tonolla, M.; Petrini, O. Identification of Staphylococcus intermedius Group by MALDI-TOF MS. Syst. Appl. Microbiol. 2011, 34, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Osland, A.M.; Vestby, L.K.; Fanuelsen, H.; Slettemeas, J.S.; Sunde, M. Clonal diversity and biofilm-forming ability of methicillin-resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 2012, 67, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Black, C.C.; Solyman, S.M.; Eberlein, L.C.; Bemis, D.A.; Woron, A.M.; Kania, S.A. Identification of a predominant multilocus sequence type, pulsed-field gel electrophoresis cluster, and novel staphylococcal chromosomal cassette in clinical isolates of mecA-containing, methicillin-resistant Staphylococcus pseudintermedius. Vet. Microbiol. 2009, 139, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, J.; Logue, C.M.; Liu, K.; Cao, X.; Zhang, W.; Shen, J.; Wu, C. Methicillin-resistant Staphylococcus pseudintermedius isolated from canine pyoderma in North China. J. Appl. Microbiol. 2012, 112, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.H.; Yoon, J.W.; Lee, S.Y.; Park, H.M. High prevalence of Fluoroquinolone- and Methicillin-resistant Staphylococcus pseudintermedius isolates from canine pyoderma and otitis externa in veterinary teaching hospital. J. Microbiol. Biotechnol. 2010, 20, 798–802. [Google Scholar]
- Arnold, A.R.; Burnham, C.A.; Ford, B.A.; Lawhon, S.D.; McAllister, S.K.; Lonsway, D.; Albrecht, V.; Jerris, R.C.; Rasheed, J.K.; Limbago, B.; et al. Evaluation of an Immunochromatographic Assay for Rapid Detection of Penicillin-Binding Protein 2a in Human and Animal Staphylococcus intermedius Group, Staphylococcus lugdunensis, and Staphylococcus schleiferi Clinical Isolates. J. Clin. Microbiol. 2016, 54, 745–748. [Google Scholar] [CrossRef]
- Sasaki, T.; Kikuchi, K.; Tanaka, Y.; Takahashi, N.; Kamata, S.; Hiramatsu, K. Methicillin-resistant Staphylococcus pseudintermedius in a veterinary teaching hospital. J. Clin. Microbiol. 2007, 45, 1118–1125. [Google Scholar] [CrossRef]
- Kawakami, T.; Shibata, S.; Murayama, N.; Nagata, M.; Nishifuji, K.; Iwasaki, T.; Fukata, T. Antimicrobial susceptibility and methicillin resistance in Staphylococcus pseudintermedius and Staphylococcus schleiferi subsp. coagulans isolated from dogs with pyoderma in Japan. J. Vet. Med. Sci. 2010, 72, 1615–1619. [Google Scholar] [CrossRef]
- Van Duijkeren, E.; Catry, B.; Greko, C.; Moreno, M.A.; Pomba, M.C.; Pyorala, S.; Ruzauskas, M.; Sanders, P.; Threlfall, E.J.; Torren-Edo, J.; et al. Review on methicillin-resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 2011, 66, 2705–2714. [Google Scholar] [CrossRef]
- Moodley, A.; Damborg, P.; Nielsen, S.S. Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin: Literature review from 1980 to 2013. Vet. Microbiol. 2014, 171, 337–341. [Google Scholar] [CrossRef]
- Siak, M.; Burrows, A.K.; Coombs, G.W.; Khazandi, M.; Abraham, S.; Norris, J.M.; Weese, J.S.; Trott, D.J. Characterization of meticillin-resistant and meticillin-susceptible isolates of Staphylococcus pseudintermedius from cases of canine pyoderma in Australia. J. Med. Microbiol. 2014, 63, 1228–1233. [Google Scholar] [CrossRef]
- Gold, R.M.; Cohen, N.D.; Lawhon, S.D. Amikacin resistance in Staphylococcus pseudintermedius isolated from dogs. J. Clin. Microbiol. 2014, 52, 3641–3646. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, K.; Schwarz, S. Antimicrobial resistance of Staphylococcus pseudintermedius. Vet. Dermatol. 2012, 23, 276–282 e55. [Google Scholar] [CrossRef]
- Wegener, A.; Broens, E.M.; Zomer, A.; Spaninks, M.; Wagenaar, J.A.; Duim, B. Comparative genomics of phenotypic antimicrobial resistances in methicillin-resistant Staphylococcus pseudintermedius of canine origin. Vet. Microbiol. 2018, 225, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Boerlin, P.; Burnens, A.P.; Frey, J.; Kuhnert, P.; Nicolet, J. Molecular epidemiology and genetic linkage of macrolide and aminoglycoside resistance in Staphylococcus intermedius of canine origin. Vet. Microbiol. 2001, 79, 155–169. [Google Scholar] [CrossRef]
- Perez-Sancho, M.; Vela, A.I.; Kostrzewa, M.; Zamora, L.; Casamayor, A.; Dominguez, L.; Fernandez-Garayzabal, J.F. First analysis by MALDI-TOF MS technique of Chryseobacterium species relevant to aquaculture. J. Fish Dis. 2018, 41, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.T.; Burnham, C.A.; Westblade, L.F.; Dien Bard, J.; Lawhon, S.D.; Wallace, M.A.; Stanley, T.; Burd, E.; Hindler, J.; Humphries, R.M. Evaluation of Oxacillin and Cefoxitin Disk and MIC Breakpoints for Prediction of Methicillin Resistance in Human and Veterinary Isolates of Staphylococcus intermedius Group. J. Clin. Microbiol. 2016, 54, 535–542. [Google Scholar] [CrossRef]
- Elbehiry, A.; Al-Dubaib, M.; Marzouk, E.; Osman, S.; Edrees, H. Performance of MALDI biotyper compared with Vitek 2 compact system for fast identification and discrimination of Staphylococcus species isolated from bovine mastitis. MicrobiologyOpen 2016, 5, 1061–1070. [Google Scholar] [CrossRef]
- Saraiva, M.M.; De Leon, C.M.; Santos, S.C.; Stipp, D.T.; Souza, M.M.; Santos Filho, L.; Gebreyes, W.A.; Oliveira, C.J. Accuracy of PCR targeting different markers for Staphylococcus aureus identification: A comparative study using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as the gold standard. J. Vet. Diagn. Investig. 2018, 30, 252–255. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; CLSI Standard M02; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI Standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Standard M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Hernández, M.; Iglesias, M.R.; Rodríguez-Lázaro, D.; Gallardo, A.; Quijada, N.; Miguela-Villoldo, P.; Campos, M.J.; Píriz, S.; López-Orozco, G.; de Frutos, C.; et al. Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015. Eurosurveillance 2017, 22, 30586. [Google Scholar] [CrossRef]
- Quijada, N.M.; Rodríguez-Lázaro, D.; Eiros, J.M.; Hernandez, M. TORMES: An automated pipeline for whole bacterial genome analysis. Bioinformatics 2019, 35, 4207–4212. [Google Scholar] [CrossRef] [PubMed]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Jolley, K.A.; Maiden, M.C.J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef]
- Abramson, J.H. WINPEPI (PEPI-for-Windows): Computer programs for epidemiologists. Epidemiol. Perspect. Innov. 2004, 1, 6. [Google Scholar] [CrossRef]
Species | PCR a | VITEK | MALDI-TOF b |
---|---|---|---|
Staphylococcus aureus | NA c | 32 | 19 |
Staphylococcus pseudintermedius | 117 | 19 | 112 |
Staphylococcus intermedius | 0 | 88 | 4 |
Staphylococcus schleiferi | 3 | 0 | 3 |
Antibiotic Class | Antibiotic (Abbreviation) | Disk Content (µ) | Breakpoint | Number of Resistant (% Resistance) | |
---|---|---|---|---|---|
S. aureus (n = 19) | S. pseudintermedius (n = 117) | ||||
Fluoroquinolones | Ciprofloxacin (CIP) a | 5 | ≤15 | 3(15.79) | 23(19.65) |
Ofloxacin (OFX) a | 5 | ≤14 | 4(21.05) | 22(18.80) | |
Norfloxacin (NOR) a | 10 | ≤12 | 5(26.31) | 22(18.80) | |
Trimethoprim-sulfamethoxazole | Trimethoprim- Sulfamethoxazole (SXT) a | 25 | ≤10 | 0 | 35(29.21) |
Lincosamide | Clindamycin (CLI) a | 2 | ≤14 | 3(15.79) | 50(42.73) |
Cephalosporins | Cefoxitin (FOX) a | 30 | ≤24 | 4(21.05) | 9(7.69) |
Tetracyclines | Tetracycline (TET)a | 30 | ≤14 | 2(10.53) | 60(51.28) |
Doxycycline (DOX) a | 30 | ≤12 | 0 | 0 | |
Penicillins | Penicillin (PEN)a | 6 | ≤28 | 17(89.47) | 104(88.89) |
Oxacillin b | - | ≥0.5/≥ 4 c | 4(21.05) | 19(16.23) | |
Aminoglycosides | Kanamycin (KAN) a | 30 | ≤13 | 3(15.79) | 58(49.57) |
Amikacin (AMK) a | 30 | ≤14 | 3(15.79) | 1(0.85) | |
Gentamicin (GEN) a | 10 | ≤12 | 3(15.79) | 28(23.93) | |
Macrolides | Erythromycin (ERY) a | 15 | ≤13 | 5(26.31) | 54(46.15) |
Clarithromycin (CLR) a | 15 | ≤13 | 5(26.31) | 54(46.15) | |
Chloramphenicol | Chloramphenicol (CHL) a | 30 | ≤12 | 0 | 29(24.78) |
Teicoplanin | Teicoplanin (TEC)a | 30 | ≤10 | 0 | 0 |
Linezolid | Linezolid (LZD)a | 30 | ≤20 | 0 | 0 |
Rifampin | Rifampin (RIF)a | RIF5 | ≤16 | 0 | 0 |
Vancomycin. | Vancomycin b | − | ≥32/≥16 d | 0 | 0 |
Antibiotic (Abbreviation) | Disk Content (µg) | Number of Resistant (% Resistance) | ||
---|---|---|---|---|
2007–2010 (n = 44) | 2011–2014 (n = 43) | 2015–2016 (n = 51) | ||
Kanamycin (KAN) | 30 | 15 (34.09%) | 20 (45.45%) | 26 (50.98%) |
Amikacin (AMK) | 30 | 1 (2.27%) | 2 (4.55%) | 1 (1.96%) |
Gentamicin (GEN) | 10 | 6 (13.64%) | 10 (22.73%) | 15 (29.41%) |
Cefoxitin (FOX) | 30 | 3 (6.82%) | 6 (13.64%) | 4 (7.84%) |
Penicillin (PEN) | 6 | 38 (86.36%) | 36 (81.82%) | 47 (92.16%) |
Ciprofloxacin (CIP) | 5 | 4 (9.09%) | 8 (18.18%) | 15 (29.41%) |
Norfloxacin (NOR) | 10 | 5 (11.36%) | 8 (18.18%) | 15 (29.41%) |
Ofloxacin (OFX) | 5 | 4 (9.09%) | 8 (18.18%) | 15 (29.41%) |
Tetracycline (TET) | 30 | 21 (47.73%) | 22 (50%) | 19 (37.25%) |
Erythromycin (ERY) | 15 | 18 (40.91%) | 17 (38.64%) | 24 (47.06%) |
Clarithromycin (CLR) | 15 | 18 (40.91%) | 17 (38.64%) | 24 (47.06%) |
Teicoplanin (TEC) | 30 | 0 | 0 | 0 |
Doxycycline (DOX) | 30 | 0 | 0 | 0 |
Trimethoprim- Sulfamethoxazole (SXT) | 25 | 4 (9.09%) | 16 (36.36%) | 15 (29.41%) |
Linezolid (LZD) | 30 | 0 | 0 | 0 |
Rifampin (RIF) | 5 | 15 (34.09%) | 17 (38.64%) | 21 (41.18%) |
Clindamycin (CLI) | 2 | 0 | 0 | 0 |
Chloramphenicol (CHL) | 30 | 10 (22.73%) | 8 (18.18%) | 11 (21.57%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).