Identification of New Ocellatin Antimicrobial Peptides by cDNA Precursor Cloning in the Frame of This Family of Intriguing Peptides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Peptide-Encoding cDNA Sequences
2.2. Structural Comparison and Nomenclature
2.3. The Ocellatin Family
2.4. Amino Acid Frequency and Particular Motif Occurrence
2.5. Phylogenetic Relationships
2.6. Physical-Chemical Properties, 3D Structure, and Activity Prediction
2.6.1. Physical-Chemical Properties
2.6.2. D Theoretical Structures
2.6.3. Activity Prediction
3. Materials and Methods
3.1. Amphibian Collection
3.2. cDNA Cloning
3.3. Prepro-Peptide cDNA Amplification and Selection
3.4. Insert Sequencing and Prepro-Peptide Identification
3.5. Sequence Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raaymakers, C.; Verbrugghe, E.; Hernot, S.; Hellebuyck, T.; Betti, C.; Peleman, C.; Claeys, M.; Bert, W.; Caveliers, V.; Ballet, S.; et al. Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nat. Commun. 2017, 8, 1495. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, A.E.; Marani, M.M.; Soldi, R.A.; Mendonça, J.N.; Faivovich, J.; Cabrera, G.M.; Lopes, N.P. Cleavage of Peptides from Amphibian Skin Revealed by Combining Analysis of Gland Secretion and in Situ MALDI Imaging Mass Spectrometry. ACS Omega 2018, 3, 5426–5434. [Google Scholar] [CrossRef]
- Bessa, L.J.; Eaton, P.; Dematei, A.; Placido, A.; Vale, N.; Gomes, P.; Delerue-Matos, C.; Leite, J.R.S.A.; Gameiro, P. Synergistic and antibiofilm properties of ocellatin peptides against multidrug-resistant Pseudomonas aeruginosa. Future Microbiol. 2018, 13, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Mobarki, N.S.; Almerabi, B.A.; Hattan, A. Antibiotic resistance crisis. Int. J. Med. Dev. Ctries 2019, 3, 561–564. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.-D.; Won, H.-S.; Kim, J.-H.; Mishig-Ochir, T.; Lee, B.-J. Antimicrobial Peptides for Therapeutic Applications: A Review. Molecules 2012, 17, 12276–12286. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Pept. Sci. 2019, e24122. [Google Scholar] [CrossRef]
- Baindara, P.; Ghosh, A.K.; Mandal, S.M. Coevolution of resistance against antimicrobial peptides. Microb. Drug Resist. 2020, 26, 880–899. [Google Scholar] [CrossRef]
- Ramesh, S.; Govender, T.; Kruger, H.G.; de la Torre, B.G.; Albericio, F. Short AntiMicrobial peptides (SAMP) as a class of extraordinary promising therapeutic agentes. J. Pept. Sci. 2016, 22, 438–451. [Google Scholar] [CrossRef]
- Fjell, C.; Hiss, J.; Hancock, R.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Pennington, M.W.; Czerwinski, A.; Norton, R. Peptide therapeutics from venom: Current status and potential. Bioorgan. Med. Chem. 2018, 26, 2738–2758. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [Green Version]
- Pukala, T.L.; Bowie, J.H.; Maselli, V.M.; Musgrave, I.F.; Tyler, M.J. Host-defence peptides from the glandular secretions of amphibians: Structure and activity. Nat. Prod. Rep. 2006, 23, 368–393. [Google Scholar] [CrossRef]
- Wang, G. Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction. Antibiotics 2020, 9, 491. [Google Scholar] [CrossRef]
- Nascimento, A.C.C.; Zanotta, L.C.; Kyaw, C.M.; Schwartz, E.N.F.; Schwartz, C.A.; Sebben, A.; Sousa, M.V.; Fontes, W.; Castro, M.S. Ocellatins: New Antimicrobial Peptides from the Skin Secretion of the South American Frog Leptodactylus ocellatus (Anura: Leptodactylidae). Protein J. 2004, 23, 501–508. [Google Scholar] [CrossRef]
- Nascimento, A.; Chapeaurouge, A.; Perales, J.; Sebben, A.; Sousa, M.; Fontes, W.; Castro, M. Purification, characterization and homology analysis of ocellatin 4, a cytolytic peptide from the skin secretion of the frog Leptodactylys ocellatus. Toxicon 2007, 50, 1095–1104. [Google Scholar] [CrossRef]
- American Museum of Natural History. Amphibian Species of the World: An Online Reference; Version 6.1; Frost, D.R., Ed.; American Museum of Natural History: New York, NY, USA, 2020; Available online: https://amphibiansoftheworld.amnh.org/index.php (accessed on 13 September 2020).
- Marani, M.M.; Dourado, F.S.; Quelemes, P.V.; Araujo, A.R.; Perfeito, M.L.G.; Barbosa, E.A.; Veras, L.M.C.; Coelho, A.L.R.; Andrade, E.B.; Eaton, P.; et al. Characterization and Biological Activities of Ocellatin Peptides from the Skin Secretion of the Frog Leptodactylus pustulatus. J. Nat. Prod. 2015, 78, 1495–1504. [Google Scholar] [CrossRef]
- Vanhoye, D.; Bruston, F.; Nicolas, P.; Amiche, M. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur. J. Biochem. 2003, 270, 2068–2081. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Zasloff, M. A database view of naturally occurring antimicrobial peptides: Nomenclature, classification and amino acid sequence analysis. In Antimicrobial Peptides: Discovery, Design, and Novel Therapeutic Strategies; Wang, G., Ed.; CAB International: Cambridge, MA, USA, 2010; pp. 1–21. [Google Scholar]
- Kang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data 2019, 6, 148. [Google Scholar] [CrossRef] [Green Version]
- Lavilla, E.O.; Langone, J.A.; Caramaschi, U.; Heyer, W.R.; De Sá, R.O. The identification of Rana ocellata Linnaeus, 1758. Nomenclatural impact on the species currently known as Leptodactylus ocellatus (Leptodactylidae) and Osteopilus brunneus (Gosse, 18514) (Hylidae). Zootaxa 2010, 2346, 1–16. [Google Scholar]
- Amiche, M.; Ladram, A.; Nicolas, P. A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides 2008, 29, 2074–2082. [Google Scholar] [CrossRef]
- Conlon, J.M. A proposed nomenclature for antimicrobial peptides from frogs of the genus Leptodactylus. Peptides 2008, 29, 1631–1632. [Google Scholar] [CrossRef]
- Conlon, J.M. Reflections on a systematic nomenclature for antimicrobial peptides from the skin of frogs of the family Ranidae. Peptides 2008, 29, 1815–1819. [Google Scholar] [CrossRef]
- Siano, A.; Humpola, M.V.; de Oliveira, E.; Albericio, F.; Simonetta, A.C.; Lajmanovich, R.; Tonarelli, G.G. Leptodactylus latrans Amphibian Skin Secretions as a Novel Source for the Isolation of Antibacterial Peptides. Molecules 2018, 23, 2943. [Google Scholar] [CrossRef] [Green Version]
- Leite, J.M.A., Jr.; Silva, L.P.; Silva-Leite, R.R.; Ferrari, A.S.; Noronha, S.E.; Silva, H.R.; Bloch, C., Jr.; Leite, J.R.S.A. Leptodactylus Ocellatus (Amphibia): Mechanism of defense in the skin and molecular phylogenetic relationships. J. Exp. Zool. A Ecol. Genet. Physiol. 2010, 313, 1–8. [Google Scholar] [CrossRef]
- Rollins-Smith, L.A.; King, J.D.; Nielsen, P.F.; Sonnevend, A.; Conlon, J.M. An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae). Regul. Pept. 2005, 124, 173–178. [Google Scholar] [CrossRef]
- King, J.D.; Al-Ghaferi, N.; Abraham, B.; Sonnevend, A.; Leprince, J.; Nielsen, P.F.; Conlon, J.M. Pentadactylin: An antimicrobial peptide from the skin secretions of the South American bullfrog Leptodactylus pentadactylus. Comp. Biochem. Physiol. C 2005, 141, 393–397. [Google Scholar] [CrossRef]
- Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Sonnevend, A.; King, J.D.; Nielsen, P.F. Purification and properties of laticeptin, an antimicrobial peptide from skin secretions of the South American frog Leptodactylus laticeps. Protein Pept. Lett. 2006, 13, 411–415. [Google Scholar] [CrossRef]
- Dourado, F.S.; Leite, J.R.S.A.; Silvab, L.P.; Melo, J.A.T.; Bloch, C., Jr.; Schwartz, E.F. Antimicrobial peptide from the skin secretion of the frog Leptodactylus syphax. Toxicon 2007, 50, 572–580. [Google Scholar] [CrossRef]
- King, J.D.; Leprince, J.; Vaudry, H.; Coquet, L.; Jouenne, T.; Conlon, J.M. Purification and characterization of antimicrobial peptides from the Caribbean frog, Leptodactylus validus (Anura: Leptodactylidae). Peptides 2008, 29, 1287–1292. [Google Scholar] [CrossRef]
- Cardozo-Filho, J.L.; Soares, A.A.; Bloch, C., Jr.; Silva, L.P.; Stabeli, R.G.; Calderon, L.A. Identification of peptides from Amazonian Leptodactylus knudseni skin secretion by MALDI TOF/TOF; UniProtKB/Swiss-Prot. P86711 (OCE1_LEPKN). 2010. Available online: http://www.uniprot.org/uniprot/P86711 (accessed on 1 July 2020).
- Gusmão, K.A.G.; dos Santos, D.M.; Santos, V.M.; Cortes, M.E. Ocellatin peptides from the skin secretion of the South American frog Leptodactylus labyrinthicus (Leptodactylidae): Characterization, antimicrobial activities and membrane interactions. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Sousa, N.A.; Oliveira, G.A.L.; de Oliveira, A.P.; Lopes, A.L.F.; Iles, B.; Nogueira, K.M.; Araújo, T.S.L.; Souza, L.K.M.; Araújo, A.R.; Ramos-Jesus, J.; et al. Novel Ocellatin Peptides Mitigate LPS-induced ROS Formation and NF-kB Activation in Microglia and Hippocampal Neurons. Sci. Rep. 2020, 10, 2696. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, A.C.C. Cytolytic Peptides and Proteases from the Skin Secretion of the Frog Leptodactylus Ocellatus; University of Brasilia: Brasilia, Brazil, 2007; Available online: https://www.uniprot.org/uniprot/P85443 (accessed on 1 July 2020).
- King, J.D.; Rollins-Smith, L.A.; Nielsen, P.F.; John, A.; Conlon, J.M. Characterization of a peptide from skin secretions of male specimens of the frog, Leptodactylus fallax that stimulates aggression in male frogs. Peptides 2005, 26, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Abdel-Wahab, Y.H.; Flatt, P.R.; Leprince, J.; Vaudry, H.; Jouenne, T.; Condamine, E. A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae). Peptides 2009, 30, 888–892. [Google Scholar] [CrossRef]
- Sousa, J.C.; Berto, R.F.; Gois, E.A.; Fontenele-Cardi, N.C.; Honório, J.E., Jr.; Konno, K.; Richardson, M.; Rocha, M.F.; Camargo, A.A.; Pimenta, D.C.; et al. Leptoglycin: A new glycine/leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon 2009, 54, 23–32. [Google Scholar] [CrossRef]
- Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci. 2009, 10, 585–606. [Google Scholar] [CrossRef]
- Marani, M.M.; Pérez, L.O.; Rodrigues de Araujo, A.; Plácido, A.; Sousa, C.F.; Veras Quelemes, P.; Oliveira, M.; Gomes-Alves, A.G.; Pueta, M.; Gameiro, P.; et al. Thaulin-1: The first antimicrobial peptide isolated from the skin of a Patagonian frog Pleurodema thaul (Anura: Leptodactylidae: Leiuperinae) with activity against Escherichia coli. Gene 2017, 605, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Kishi, I.R.N.; Stach-Machado, D.; Singulani, J.d.L.; dos Santos, C.T.; Fusco-Almeida, A.M.; Cilli, E.M.; Freitas-Astúa, J.F.; Picchi, S.C.; Machado, M.A. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS ONE 2018, 13, e0203451. [Google Scholar]
- Nielsen, S.L.; Frimodt-Møller, N.; Kragelund, B.B.; Hansen, P.R. Structure–activity study of the antibacterial peptide fallaxin. Protein Sci. 2007, 16, 1969–1976. [Google Scholar] [CrossRef] [Green Version]
- Goraya, J.; Wang, Y.; Li, Z.; O’Flaherty, M.; Knoop, F.C.; Platz, J.E.; Conlon, J.M. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur. J. Biochem. 2000, 267, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Prajeep, M.; Mechkarska, M.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; King, J.D. Characterization of the host-defense peptides from skin secretions of Merlin’s clawed frog Pseudhymenochirus merlini: Insights into phylogenetic relationships among the Pipidae. Comp. Biochem. Physiol. Part. D 2013, 8, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Ling, G.; Gao, J.; Zhang, S.; Xie, Z.; Wei, L.; Yu, H.; Wang, Y. Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design. PLoS ONE 2014, 9, e93216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Ma, C.; Zhou, M.; Xi, X.; Li, L.; Wu, D.; Wang, L.; Lin, C.; Lopez, J.C.; Chen, T.; et al. Phylloseptin-PBa—A novel broad-spectrum antimicrobial peptide from the skin secretion of the peruvian purple-sided leaf frog (Phyllomedusa Baltea) which exhibits cancer cell cytotoxicity. Toxins 2015, 7, 5182–5193. [Google Scholar] [CrossRef] [Green Version]
- Chufán, E.E.; De, M.; Eipper, B.A.; Mains, R.E.; Amzel, L.M. Amidation of bioactive peptides: The structure of the lyase domain of the amidating enzyme. Structure 2009, 17, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Wan, J.; Roginski, H.; Lee, A.; Shiell, B.; Michalski, W.P.; Coventry, M.J. Comparison of the effects of acylation and amidation on the antimicrobial and antiviral properties of lactoferrin. Lett. Appl. Microbiol. 2007, 44, 229–234. [Google Scholar] [CrossRef]
- Dennison, S.R.; Harris, F.; Bhatt, T.; Singh, J.; Phoenix, D.A. The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol. Cell. Biochem. 2009, 332, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic a helical antimicrobial peptides A systematic study of the effects of structural and physical properties on biological activity. Eur. J. Biochem. 2001, 268, 5589–5600. [Google Scholar] [CrossRef]
- De Sá, R.; Grant, T.; Camargo, A.; Heyer, W.R.; Ponssa, M.L.; Stanley, E. Systematics of the neotropical genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): Phylogeny, the relevance of non-molecular evidence, and Species accounts. S. Am. J. Herpetol. 2014, 9, 1–128. [Google Scholar]
- Jackway, R.J.; Pukala, T.L.; Donnellan, S.C.; Sherman, P.J.; Tyler, M.J.; Bowie, J.H. Skin peptide and cDNA profiling of Australian anurans: Genus and species identification and evolutionary trends. Peptides 2011, 32, 161–172. [Google Scholar] [CrossRef]
- Wabnitz, P.A.; Bowie, J.H.; Tyler, M.J.; Wallace, J.C.; Smith, B.P. Differences in the skin peptides of the male and female Australian tree frog Litoria splendida. Eur. J. Biochem. 2000, 267, 269–275. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Leprince, J. Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Rev. Proteom. 2019, 16, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, M.R.; Yount, N.Y. Unifying themes in host defense effector polypeptides. Nat. Rev. Microbiol. 2007, 5, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.; Augusto, M.T.; Felicio, M.R.; Hollmann, A.; Franco, O.L.; Goncalves, S.; Nuno, C.S. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv. 2018, 36, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Juretić, D.; Simunić, J. Design of α-helical antimicrobial peptides with a high selectivity index. Expert Opin. Drug Discov. 2019, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Weiss, R.M.; Terwilliger, T.C. The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature 1982, 299, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Libério, M.S.; Joanitti, G.A.; Azevedo, R.B.; Cilli, E.M.; Zanotta, L.C.; Nascimento, A.C.; Sousa, M.V.; Pires Júnior, O.R.; Fontes, W.; Castro, M.S. Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids 2011, 44, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Cunha Neto, R.D.; Vigerelli, H.; Jared, C.; Antoniazzi, M.M.; Chaves, L.B.; Rodrigues da Silva, A.C.; Lopes de Melo, R.; Sciani, J.M.; Pimenta, D.C. Synergic effects between ocellatin-F1 and bufotenine on the inhibition of BHK-21cellular infection by the rabies virus. J. Venom. Anim. Toxins 2015, 21. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, M.C.; Strandberg, E.; Grau-Campistany, A.; Wadhwani, P.; Reichert, J.; Bürck, J.; Rabanal, F.; Auger, M.; Paquin, J.F.; Ulrich, A.S. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry 2017, 56, 1680–1695. [Google Scholar] [CrossRef]
- Shagaghi, N.; Palombo, E.A.; Clayton, A.H.A.; Bhave, M. Antimicrobial pptides: Biochemical determinants of activity and biophysical techniques od elucidating their functionality. World J. Microb. Biot. 2018, 34. [Google Scholar] [CrossRef]
- Gong, Z.; Doolin, M.T.; Adhikari, S.; Stroka, K.M.; Karlsson, A.J. Role of charge and hydrophobicity in translocation of cell-penetrating peptides into Candida albicans cells. AIChe J. 2019, e16768. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, R. Molecular Cloning. A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring, NY, USA, 2001; Volume 1. [Google Scholar]
- Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.; Vishnepolsky, B.; et al. DBAASP v.2: An Enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 2016, 44, D1104–D1112. [Google Scholar] [CrossRef]
- Protein BLAST. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 15 April 2020).
- Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J. Chem. Theor. Comput. 2014, 10, 4745–4758. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 2008, 24, 2101–2102. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Higgins, D.; Thompson, J.; Gibson, T.; Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016, 44, D1094–D1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, K.; Kumar, R.; Singh, S.; Tuknait, A.; Gautam, A.; Mathur, D.; Anand, P.; Varshney, G.C.; Raghava, G.P.S. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides. Sci. Rep. 2016, 6, 22843. [Google Scholar] [CrossRef]
Peptide | Sequence | Mw | Net | Identity/Similarity | Reference | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Charge | Percentage (%) | |||||||||||||||||||||||||
ocellatin-2 | G | V | L | D | I | F | K | D | A | A | K | Q | I | L | A | H | A | A | E | Q | I | a | 2250.63 | 0 | [15] | |
ocellatin-11 | G | V | L | D | I | F | K | D | A | A | K | Q | I | L | A | H | A | A | E | K | I | a | 2250.67 | 1 | 95.2/100 | this work |
ocellatin-5 | A | V | L | D | I | L | K | D | V | G | K | G | L | L | S | H | F | M | E | K | V | a | 2311.82 | 1 | [27] | |
ocellatin-7 | G | V | V | D | I | L | K | D | T | G | K | K | L | L | S | H | L | M | E | K | I | a | 2336.87 | 2 | 71.4/76.2 | this work |
ocellatin-8 | G | V | V | D | I | L | K | D | T | G | K | K | L | L | S | H | L | M | E | K | V | a | 2322.84 | 2 | 76.2/76.2 | this work |
ocellatin-9 | G | V | L | D | I | F | K | D | T | G | K | K | L | L | S | H | L | M | E | K | V | a | 2370.89 | 1 | 57.1/76.2 | this work |
P3-Lla-2085 | G | L | L | D | F | L | K | A | A | G | K | G | L | V | S | N | L | L | E | K | a | 2085.52 | 2 | [26] | ||
ocellatin-10 | G | L | L | D | F | L | K | A | A | G | K | G | L | V | S | N | L | I | E | K | a | 2184.65 | 2 | 90.5/95.2 | this work | |
ocellatin-6 | A | I | L | D | F | I | K | A | A | G | K | G | L | V | T | N | I | M | E | K | V | G | 2273.77 | 2 | 68.2/86.4 | [27] |
Name | Sequence | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ocellatin-F (fallaxin) | G | V | V | D | I | L | K | G | A | A | K | D | I | A | G | H | L | A | S | K | V | M | N | K | L | |||||||
Ocellatin-K1 | G | V | V | D | I | L | K | G | A | A | K | D | L | A | G | H | L | A | S | K | V | M | N | K | I | |||||||
Ocellatin-L1 (laticeptin) | G | V | V | D | I | L | K | G | A | A | K | D | L | A | G | H | L | A | T | K | V | M | N | K | L | |||||||
Ocellatin-L2 | G | V | V | D | I | L | K | G | A | A | K | D | L | A | G | H | L | A | T | K | V | M | D | K | L | |||||||
Ocellatin-S (syphaxin) | G | V | L | D | I | L | K | G | A | A | K | D | L | A | G | H | V | A | T | K | V | I | N | K | I | |||||||
Ocellatin-P (pentadactylin) | G | L | L | D | T | L | K | G | A | A | K | N | V | V | G | S | L | A | S | K | V | M | E | K | L | |||||||
Ocellatin-7 | G | V | V | D | I | L | K | D | T | G | K | K | L | L | S | H | L | M | E | K | I | |||||||||||
Ocellatin-8 | G | V | V | D | I | L | K | D | T | G | K | K | L | L | S | H | L | M | E | K | V | |||||||||||
Ocellatin-9 | G | V | L | D | I | F | K | D | T | G | K | K | L | L | S | H | L | M | E | K | V | |||||||||||
Ocellatin-5 | A | V | L | D | I | L | K | D | V | G | K | G | L | L | S | H | F | M | E | K | V | |||||||||||
Ocellatin-10 | G | L | L | D | F | L | K | A | A | G | K | G | L | V | S | N | L | I | E | K | V | |||||||||||
Ocellatin-6 | A | V | L | D | F | I | K | A | A | G | K | G | L | V | T | N | I | M | E | K | V | G | ||||||||||
Ocellatin-PT6 | G | V | F | D | I | I | K | G | A | G | K | Q | L | I | A | H | A | M | E | K | I | A | E | K | V | G | L | N | K | D | G | N |
Ocellatin-PT8 | G | V | F | D | I | I | K | G | A | G | K | Q | L | I | A | R | A | M | G | K | I | A | E | K | V | G | L | N | K | D | G | N |
Ocellatin-PT7 | G | V | F | D | I | I | K | G | A | G | K | Q | L | I | A | H | A | M | G | K | I | A | E | K | V | G | L | N | K | D | G | N |
Ocellatin-PT4 | G | V | F | D | I | I | K | G | A | G | K | Q | L | I | A | H | A | M | G | K | I | A | E | K | V | |||||||
Ocellatin-PT1 | G | V | F | D | I | I | K | D | A | G | K | Q | L | V | A | H | A | M | G | K | I | A | E | K | V | |||||||
Ocellatin-PT5 | G | V | F | D | I | I | K | D | A | G | R | Q | L | V | A | H | A | M | G | K | I | A | E | K | V | |||||||
Ocellatin-PT2 | G | V | F | D | I | I | K | D | A | G | K | Q | L | V | A | H | A | T | G | K | I | A | E | K | V | |||||||
Ocellatin-PT3 | G | V | I | D | I | I | K | G | A | G | K | D | L | I | A | H | A | I | G | K | L | A | E | K | V | |||||||
Ocellatin-V1 | G | V | V | D | I | L | K | G | A | G | K | D | L | L | A | H | A | L | S | K | L | S | E | K | V | |||||||
Ocellatin-V3 | G | V | L | D | I | L | T | G | A | G | K | D | L | L | A | H | A | L | S | K | L | S | E | K | V | |||||||
Ocellatin-V2 | G | V | L | D | I | L | K | G | A | G | K | D | L | L | A | H | A | L | S | K | I | S | E | K | V | |||||||
Ocellatin-1 | G | V | V | D | I | L | K | G | A | G | K | D | L | L | A | H | L | V | G | K | I | S | E | K | V | |||||||
Ocellatin-11 | G | V | L | D | I | F | K | D | A | A | K | Q | I | L | A | H | A | A | E | K | I | |||||||||||
Ocellatin-2 | G | V | L | D | I | F | K | D | A | A | K | Q | I | L | A | H | A | A | E | Q | I | |||||||||||
Ocellatin-4 | G | L | L | D | F | V | T | G | V | G | K | D | I | F | A | Q | L | I | K | Q | I | |||||||||||
Ocellatin-3 | G | V | L | D | I | L | K | N | A | A | K | N | I | L | A | H | A | A | E | Q | I | |||||||||||
∙ | : | ∙ | * | ∙ | ∙ | ∙ | ∙ | : | : | : | : | : |
Name | MIC | Reference | |||
---|---|---|---|---|---|
E. coli | S. aureus | ||||
µg/mL | µM | µg/mL | µM | ||
Ocellatin-1 | * | * | NT | NT | [15] |
Ocellatin-2 | * | * | NT | NT | [15] |
Ocellatin-3 | * | * | NT | NT | [15] |
Ocellatin-4 | 145 | 64 | 145 | 64 | [16] |
Ocellatin-5 | 64 | 28 | 128 | 56 | [27] |
Ocellatin-6 | 32 | 14 | 64 | 28 | [27] |
Ocellatin-F (fallaxin) | 106 | 40 | >60 | >160 | [28] ** |
Ocellatin-F1 | 1060 | 397 | 293 | 110 | [34] ** |
Ocellatin-P (pentadactylin) | 64 | 25 | 508 | 200 | [29] |
Ocellatin-PT1 | 800 | 300 | >800 | >300 | [18] |
Ocellatin-PT2 | >800 | >310 | >800 | >310 | [18] |
Ocellatin-PT3 | 800 | 320 | >800 | >320 | [18] |
Ocellatin-PT4 | 200 | 80 | >800 | >310 | [18] |
Ocellatin-PT5 | 800 | 300 | >800 | >300 | [18] |
Ocellatin-PT6 | 400 | 120 | >800 | >240 | [18] |
Ocellatin-PT7 | 200 | 60 | 800 | 245 | [18] |
Ocellatin-PT8 | 200 | 60 | 800 | 245 | [18] |
Ocellatin-L1 (laticeptin) | 128 | 50 | 512 | >200 | [30] |
Ocellatin-L2 | I | I | I | I | [30] |
Ocellatin-S (syphaxin) | NT | NT | I | I | [31] |
Ocellatin-V1 | 512 | >200 | 512 | >200 | [32] |
Ocellatin-V2 | 514 | >200 | 514 | >200 | [32] |
Ocellatin-V3 | I | I | I | I | [32] |
Ocellatin-K1 | NI | NI | NI | NI | [33] |
P3-Lla-2085 | 31 | 15 | 31 | 15 | [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marani, M.M.; Aguilar, S.; Cuzziol Boccioni, A.P.; Cancelarich, N.L.; Basso, N.G.; Albericio, F. Identification of New Ocellatin Antimicrobial Peptides by cDNA Precursor Cloning in the Frame of This Family of Intriguing Peptides. Antibiotics 2020, 9, 751. https://doi.org/10.3390/antibiotics9110751
Marani MM, Aguilar S, Cuzziol Boccioni AP, Cancelarich NL, Basso NG, Albericio F. Identification of New Ocellatin Antimicrobial Peptides by cDNA Precursor Cloning in the Frame of This Family of Intriguing Peptides. Antibiotics. 2020; 9(11):751. https://doi.org/10.3390/antibiotics9110751
Chicago/Turabian StyleMarani, Mariela M., Silvana Aguilar, Ana P. Cuzziol Boccioni, Natalia L. Cancelarich, Néstor G. Basso, and Fernando Albericio. 2020. "Identification of New Ocellatin Antimicrobial Peptides by cDNA Precursor Cloning in the Frame of This Family of Intriguing Peptides" Antibiotics 9, no. 11: 751. https://doi.org/10.3390/antibiotics9110751
APA StyleMarani, M. M., Aguilar, S., Cuzziol Boccioni, A. P., Cancelarich, N. L., Basso, N. G., & Albericio, F. (2020). Identification of New Ocellatin Antimicrobial Peptides by cDNA Precursor Cloning in the Frame of This Family of Intriguing Peptides. Antibiotics, 9(11), 751. https://doi.org/10.3390/antibiotics9110751