The Role of the Xylem in Oxytetracycline Translocation within Citrus Trees
Abstract
:1. Introduction
2. Results
2.1. Standard Curve
2.2. Greenhouse Experiment
2.3. Field Experiment
3. Discussion
4. Materials and Methods
4.1. Greenhouse Study
4.2. Field Study
4.3. Extraction and Analysis of Oxytetracycline
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bové, J.; de Barros, A. Huanglongbing: A destructive, newly emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Grafton-Cardwell, E.E.; Stelinski, L.L.; Stansly, P.A. Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. Annu. Rev. Entomol. 2013, 58, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, V.O.; Duffy, B. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 2016, 31, 199–210. [Google Scholar] [CrossRef]
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef]
- Blaustein, R.A.; Lorca, G.L.; Teplitski, M. Challenges for managing Candidatus Liberibacter spp. (Huanglongbing Disease Pathogen): Current control measures and future directions. Phytopathology 2017, 108, 424–435. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, R.E.; van Vuuren, S.P. Decreases in fruit greening of sweet orange by trunk injections with tetracyclines. Plant Dis. Reptorter 1970, 55, 747–750. [Google Scholar]
- Zhao, X.Y. Citrus yellow shoot disease (Huanglongbing) in China—A review. In Proceedings of the International Society of Citriculture International Citrus/International Citrus Congr, Tokyo, Japan, 9–12 November 1981. [Google Scholar]
- Aubert, B.; Bove, J.M. Effect of Penicillin or tetracycline injections of citrus trees affected by greening disease under field conditions in reunion island. Proc. Eighth Conf. Int. Organ. Citrus Virol. 1980, 8, 103–108. [Google Scholar]
- Martinez, A.L.; Nora, D.M.; Armedilla, A.L. Suppression of symptoms of citrus greening disease in the Philippines with tetracycline antibiotics. Plant Dis. Report. 1970, 54, 1007–1009. [Google Scholar]
- Capoor, S.P.; Thirumal, M.J. Cure of greening affected citrus plants by chemotherapeutic agents. Plant Dis. Report. 1973, 57, 160–163. [Google Scholar]
- Zhang, M.; Yang, C.; Powell, C.A. Application of antibiotics for control of citrus Huanglongbing. Adv. Antibiot. Antibodies 2015, 1, e101. [Google Scholar]
- Sundin, G.W.; Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Powell, C.A.; Guo, Y.; Doud, M.S.; Duan, Y. A Graft-based chemotherapy method for screening effective molecules and rescuing Huanglongbing-affected citrus plants. Phytopathology 2012, 102, 567–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, K.; Ascunce, M.S.; Narouei-Khandan, H.A.; Sun, X.; Jones, D.; Kolawole, O.O.; Goss, E.M.; van Bruggen, A.H.C. Effects and side effects of penicillin injection in Huanglongbing affected grapefruit trees. Crop Prot. 2016, 90, 106–116. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, J.; Wang, N. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 2018, 108, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Zamora, M.A.S.; Escobar, R.F. Injector-size and the time of application affects uptake of tree trunk-injected solutions. Sci. Hortic. 2000, 84, 163–177. [Google Scholar] [CrossRef]
- Chaney, W.R. Anatomy and physiology related to chemical movement in trees. J. Arboric. 1986, 12, 85–91. [Google Scholar]
- De Boer, G.J.; Satchivi, N. Comparison of Translocation Properties of Insecticides Versus Herbicides that Leads to Efficacious Control of Pests as Specifically Illustrated by Isoclast Active, a New Insecticide and Arylex Active, a New Herbicides. In Retention, Uptake, and Translocation of Agrochemicals in Plants; ACS Symposium Series; Myung, K., Satchivi, N.M., Kingston, C.K., Eds.; American Chemical Society: Washington, DC, USA, 2014; pp. 75–93. [Google Scholar]
- Anderson, D.M.G.; Carolan, V.A.; Crosland, S.; Sharples, K.R.; Clench, M.R. Examination of translocation of sulfonylurea herbicides in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Commun. Mass Spectrom. 2010, 24, 3309–3319. [Google Scholar] [CrossRef]
- Weichel, L.; Nauen, R. Uptake, translocation and bioavailability of imidacloprid in several hop varieties. Pest Manag. Sci. 2003, 60, 440–446. [Google Scholar] [CrossRef]
- Peterson, C.A.; De Wildt, P.P.Q.; Edgington, L.V. A rationale for the ambimible translocation of the nematicide oxamyl in plants. Pestic. Biochem. Physiol. 1978, 8, 1–9. [Google Scholar] [CrossRef]
- Klittich, C.J.R.; Ray, S.L. Effects of physical properties on the translaminar acticvity of fungicides. Pestic. Biochem. Physiol. 2013, 107, 351–359. [Google Scholar] [CrossRef]
- Daniels, M.J. Editorial: Possible adverse effects of antibiotic therapy in plants. Clin. Infect. Dis. 1982, 4, S167–S170. [Google Scholar] [CrossRef] [PubMed]
- Timmer, L.W.; Lee, R.F.; Albrigo, L.G. Distribution and persistence of trunk-injected oxytetracycline in blight-affected and healthy citrus. J. Am. Soc. Hortic. Sci. 1982, 107, 428–432. [Google Scholar]
- Lee, R.F.; Timmer, L.W.; Albrigo, L.G. Effect of Oxytetracycline and benzimidazole treatments on blight-affected citrus trees. J. Am. Soc. Hortic. Sci. 1982, 107, 1133–1138. [Google Scholar]
- McCoy, R.E. Uptake, translocation, and persistence of oxytetracycline in coconut palm. Phytopathology 1976, 66, 1038. [Google Scholar] [CrossRef]
- Wang, N.; Pierson, E.A.; Setubal, J.C.; Xu, J.; Levy, J.G.; Zhang, Y.; Li, J.; Rangel, L.T.; Martins, J. The Candidatus Liberibacter–host interface: Insights into pathogenesis mechanisms and disease control. Annu. Rev. Phytopathol. 2017, 55, 451–482. [Google Scholar] [CrossRef]
- Al-Rimawi, F.; Hijaz, F.; Nehela, Y.; Batuman, O.; Killiny, N. Uptake, translocation, and stability of oxytetracycline and streptomycin in citrus plants. Antibiotics 2019, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- NCBI. Oxytetracycline. 2019. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/oxytetracycline (accessed on 12 December 2019).
- Kleier, D.A. Phloem mobility of xenobiotics. I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiol. 1988, 86, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Brudenell, A.J.P.; Baker, D.A.; Grayson, B.T. Phloem mobility of xenobiotics: Tabular review of physicochemical properties governing the output of the Kleier model. Plant Growth Regul. 1995, 16, 215–231. [Google Scholar] [CrossRef]
- Gebler, A.; Weber, P.; Schneider, S.; Rennenberg, H. Bidirectional exchange of amino compounds between phloem and xylem during long-distance transport in Norway spruce trees (Picea abies [L.] Karst). J. Exp. Bot. 2003, 54, 1389–1397. [Google Scholar]
- Attaran, E.; Berim, A.; Killiny, N.; Beyenal, H.; Gang, D.R.; Omsland, A. Controlled replication of ‘Candidatus Liberibacter asiaticus’ DNA in citrus leaf discs. Microb. Biotechnol. 2020, 13, 747–759. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Roy, A.; Brlansky, R.H. Live Population dynamics of ‘Candidatus Liberibacter asiaticus’, the bacterial agent associated with citrus huanglongbing, in citrus and non-citrus hosts. Plant Dis. 2014, 98, 876–884. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Lewis-Rosenblum, H.; Pelz-Stelinski, K.; Stelinski, L.L. Incidence of Candidatus liberibacter asiaticus infection in abandoned citrus occurring in proximity to commercially managed groves. J. Econ. Entomol. 2010, 103, 1972–1978. [Google Scholar] [CrossRef] [PubMed]
- Razi, M.F.; Keremane, M.L.; Ramadugu, C.; Roose, M.; Khan, I.A.; Lee, R.F. Detection of citrus huanglongbing-associated ‘Candidatus Liberibacter asiaticus’ in citrus and diaphorina citri in Pakistan, seasonal variability, and implications for disease management. Phytopathology 2014, 104, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, S.A.; Luiz, F.Q.B.F.; Oliveira, H.T.; Cifuentes-Arenas, J.C.; Raiol-Junior, L.L. Seasonal variation of ‘Candidatus Liberibacter asiaticus’ titers in new shoots of citrus in distinct environments. Plant Dis. 2017, 101, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijaz, F.; Nehela, Y.; Al-Rimawi, F.; Vincent, C.I.; Killiny, N. The Role of the Xylem in Oxytetracycline Translocation within Citrus Trees. Antibiotics 2020, 9, 691. https://doi.org/10.3390/antibiotics9100691
Hijaz F, Nehela Y, Al-Rimawi F, Vincent CI, Killiny N. The Role of the Xylem in Oxytetracycline Translocation within Citrus Trees. Antibiotics. 2020; 9(10):691. https://doi.org/10.3390/antibiotics9100691
Chicago/Turabian StyleHijaz, Faraj, Yasser Nehela, Fuad Al-Rimawi, Christopher I. Vincent, and Nabil Killiny. 2020. "The Role of the Xylem in Oxytetracycline Translocation within Citrus Trees" Antibiotics 9, no. 10: 691. https://doi.org/10.3390/antibiotics9100691
APA StyleHijaz, F., Nehela, Y., Al-Rimawi, F., Vincent, C. I., & Killiny, N. (2020). The Role of the Xylem in Oxytetracycline Translocation within Citrus Trees. Antibiotics, 9(10), 691. https://doi.org/10.3390/antibiotics9100691