Uptake, Translocation, and Stability of Oxytetracycline and Streptomycin in Citrus Plants
Abstract
:1. Introduction
2. Results
2.1. Percentage Recovery of Oxytetracycline and Streptomycin
2.2. Translocation of Streptomycin and Oxytetracycline in Citrus Seedlings via Root Drench and Stem Delivery
2.3. Stability of Streptomycin and Oxytetracycline in Citrus Plants after Root Drench
2.4. Translocation of Oxytetracycline versus Streptomycin
3. Discussion
3.1. Translocation of Oxytetracycline and Streptomycin
3.2. Stem versus Root Delivery
3.3. Stability of Oxytetracycline and Streptomycin in Citrus Seedlings
3.4. Translocation of Oxytetracycline versus Streptomycin
4. Materials and Methods
4.1. Plant Materials
4.2. Uptake of Antibiotics by Root Drench
4.3. Stem Delivery
4.4. Stability of Oxytetracycline and Streptomycin in Plant Tissues
4.5. Extraction of Oxytetracycline and Streptomycin from Plant Tissues
4.6. ELISA Assay
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manjunath, K.L.; Halbert, S.E.; Ramadugu, C.; Webb, S.; Lee, R.F. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida. Phytopathology 2008, 98, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Grafton-Cardwell, E.E.; Stelinski, L.L.; Stansly, P.A. Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. Annu. Rev. Entomol. 2013, 58, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Bové, J.; de Barros, A. Huanglongbing: A destructive, newly emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Halbert, S.E.; Manjunath, K.L. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Fla. Entomol. 2006, 87, 330–353. [Google Scholar] [CrossRef]
- Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 2005, 7, 229–252. [Google Scholar] [CrossRef]
- Tiwari, S.; Killiny, N.; Stelinski, L.L. Dynamic insecticide susceptibility changes in Florida populations of Diaphorina citri (Hemiptera: Psyllidae). J. Econ. Entomol. 2013, 106, 393–399. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Graham, J.H.; Irey, M.S.; McCollum, T.G.; Wood, B.W. Inconsequential effect of nutritional treatments on Huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Prot. 2012, 36, 73–82. [Google Scholar] [CrossRef]
- Blaustein, R.A.; Lorca, G.L.; Teplitski, M. Challenges for managing Candidatus Liberibacter spp. (Huanglongbing Disease Pathogen): Current control measures and future directions. Phytopathology 2017, 108, 424–435. [Google Scholar] [CrossRef]
- Hao, G.; Stover, E.; Gupta, G. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and Huanglongbing (HLB). Front. Plant Sci. 2016, 7, 1078. [Google Scholar] [CrossRef]
- Schwarz, R.E.; van Vuuren, S.P. Decreases in fruit greening of sweet orange by trunk injections with tetracyclines. Plant Dis. Report. 1970, 55, 747–750. [Google Scholar]
- Zhao, X.Y. Citrus yellow shoot disease (Huanglongbing) in China—A review. In Proceedings of the International Society of Citriculture; Matsumoto, K., Ed.; International Citrus Congress: Tokyo, Japan, 1982. [Google Scholar]
- Aubert, B.; Bove, J.M. Effect of Penicillin or tetracycline injections of citrus trees affected by greening disease under field conditions in reunion island. Proc. Eighth Conf. Int. Organ. Citrus Virol. 1980, 8, 103–108. [Google Scholar]
- Martinez, A.L.; Nora, D.M.; Armedilla, A.L. Suppression of symptoms of citrus greening disease in the Philippines with tetracycline antibiotics. Plant Dis. Rep. 1970, 54, 1007–1009. [Google Scholar]
- Capoor, S.P.; Thirumal, M.J. Cure of greening affected citrus plants by chemotherapeutic agents. Plant Dis. Rep. 1973, 57, 160–163. [Google Scholar]
- Zhang, M.; Yang, C.; Powell, C.A. Application of antibiotics for control of citrus Huanglongbing. Adv. Antibiot. Antibodies 2015, 1, e101. [Google Scholar]
- Zhang, M.; Powell, C.A.; Guo, Y.; Doud, M.S.; Duan, Y. A graft-based chemotherapy method for screening effective molecules and rescuing Huanglongbing-affected citrus plants. Phytopathology 2012, 102, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Ascunce, M.S.; Narouei-Khandan, H.A.; Sun, X.; Jones, D.; Kolawole, O.O.; Goss, E.M.; van Bruggen, A.H.C. Effects and side effects of penicillin injection in Huanglongbing affected grapefruit trees. Crop Prot. 2016, 90, 106–116. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, J.; Wang, N. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 2018, 108, 186–195. [Google Scholar] [CrossRef]
- Doud, M.S.; Yang, C.; Huang, Y.; Duan, Y.; Powell, C.A.; Zhong, Y.; Zhang, M. Antimicrobial compounds effective against Candidatus Liberibacter asiaticus discovered via graft-based assay in citrus. Sci. Rep. 2018, 8, 17288. [Google Scholar]
- Stockwell, V.O.; Duffy, B. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 2016, 31, 199–210. [Google Scholar] [CrossRef]
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef]
- Wang, N.; Pierson, E.A.; Setubal, J.C.; Xu, J.; Levy, J.G.; Zhang, Y.; Li, J.; Rangel, L.T.; Martins, J. The Candidatus Liberibacter–host interface: Insights into pathogenesis mechanisms and disease control. Annu. Rev. Phytopathol. 2017, 55, 451–482. [Google Scholar] [CrossRef] [PubMed]
- Daniels, M.J. Editorial: Possible adverse effects of antibiotic therapy in plants. Clin. Infect. Dis. 1982, 4, S167–S170. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, J.; Yang, M.; Zhu, Y.; Smith, F.A.; Kong, W. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ. Pollut. 2006, 147, 187–193. [Google Scholar]
- Mitchell, J.W.; Zaumeyer, W.J.; Anderson, W.P. Translocation of streptomycin in bean plants and its effect on bacterial blights. Science 1952, 115, 114–115. [Google Scholar] [CrossRef] [PubMed]
- Dye, M.H. Studies on the uptake and translocation of streptomycin by peach seedlings. Ann. Appl. Biol. 1956, 44, 567–575. [Google Scholar] [CrossRef]
- Crowdy, S.H. The uptake and translocation of griseofulvin, streptomycin and chloramphenicol in plants. Ann. Appl. Biol. 1957, 45, 208–215. [Google Scholar] [CrossRef]
- Timmer, L.W.; Lee, R.F.; Albrigo, L.G. Distribution and persistence of trunk-injected oxytetracycline in blight-affected and healthy citrus. J. Am. Soc. Hortic. Sci. 1982, 107, 428–432. [Google Scholar]
- Lee, R.F.; Timmer, L.W.; Albrigo, L.G. Effect of Oxytetracycline and benzimidazole treatments on blight-affected citrus trees. J. Am. Soc. Hortic. Sci. 1982, 107, 1133–1138. [Google Scholar]
- McCoy, R.E. Uptake, translocation, and persistence of oxytetracycline in coconut palm. Phytopathology 1976, 66, 1038. [Google Scholar] [CrossRef]
- Vincent, C.; Pierre, M.; Li, J.; Wang, N. Implications of heat treatment and systemic delivery of foliar-applied oxytetracycline on citrus physiological management and therapy delivery. Front. Plant Sci. 2019, 10, 41. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z.; Duan, S.; Lee, D.; Kolbasov, V.G.; Wang, N. The in planta effective concentration of oxytetracycline against Candidatus Liberibacter asiaticus for suppression of citrus Huanglongbing. Phytopathology 2019. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.D.; Zhu, Y.G.; Liang, Y.C.; Zhang, J.; Smith, F.A.; Yang, M. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ. Pollut. 2007, 147, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Ascunce, M.S.; Shin, K.; Huguet-Tapia, J.C.; Poudel, R.; Garrett, K.A.; van Bruggen, A.H.C.; Goss, E.M. Penicillin trunk injection affects bacterial community structure in citrus trees. Microb. Ecol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P. Remission of symptoms following tetracycline treatment of lethal yellowing-infected coconut palms. Phytopathology 1974, 64, 307. [Google Scholar] [CrossRef]
- Sinha, R.C.; Peterson, E.A. Uptake and persistence of oxytetracycline in aster plants and vector leafhoppers in relation to inhibition of clover phyllody agent. Phytopathology 1972, 62, 377–383. [Google Scholar] [CrossRef]
- Hu, J.; Wang, N. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus huanglongbing via trunk injection. Phytopathology 2016, 106, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Sundin, G.W.; Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rimawi, F.; Hijaz, F.; Nehela, Y.; Batuman, O.; Killiny, N. Uptake, Translocation, and Stability of Oxytetracycline and Streptomycin in Citrus Plants. Antibiotics 2019, 8, 196. https://doi.org/10.3390/antibiotics8040196
Al-Rimawi F, Hijaz F, Nehela Y, Batuman O, Killiny N. Uptake, Translocation, and Stability of Oxytetracycline and Streptomycin in Citrus Plants. Antibiotics. 2019; 8(4):196. https://doi.org/10.3390/antibiotics8040196
Chicago/Turabian StyleAl-Rimawi, Fuad, Faraj Hijaz, Yasser Nehela, Ozgur Batuman, and Nabil Killiny. 2019. "Uptake, Translocation, and Stability of Oxytetracycline and Streptomycin in Citrus Plants" Antibiotics 8, no. 4: 196. https://doi.org/10.3390/antibiotics8040196
APA StyleAl-Rimawi, F., Hijaz, F., Nehela, Y., Batuman, O., & Killiny, N. (2019). Uptake, Translocation, and Stability of Oxytetracycline and Streptomycin in Citrus Plants. Antibiotics, 8(4), 196. https://doi.org/10.3390/antibiotics8040196