In Vitro Antimicrobial Activity of the Decontaminant HybenX® Compared to Chlorhexidine and Sodium Hypochlorite against Common Bacterial and Yeast Pathogens
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial and Fungal Strains
4.2. In Vitro Susceptibility Testing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lopez, M.A.; Andreasi Bassi, M.; Confalone, L.; Silvestre, F.; Arcuri, C. The treatment of peri-implant diseases: A new approach using hybenx® as a decontaminant for implant surface and oral tissues. Oral Implantol. (Rome) 2016, 9, 106–114. [Google Scholar] [PubMed]
- Ye, W.-H.; Fan, B.; Purcell, W.; Meghil, M.M.; Cutler, C.W.; Bergeron, B.E.; Ma, J.-Z.; Tay, F.R.; Niu, L.-N. Anti-biofilm efficacy of root canal irrigants against in-situ Enterococcus faecalis biofilms in root canals, isthmuses and dentinal tubules. J. Dent. 2018, 79, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, G.; Corrocher, G.; Rovera, A.; Pighi, J.; Marincola, M.; Lehrberg, J.; Nocini, P.F. Decontamination using a desiccant with air powder abrasion followed by biphasic calcium sulfate grafting: A new treatment for peri-implantitis. Case Rep. Dent. 2015, 2015, 474839. [Google Scholar] [CrossRef] [PubMed]
- Sahni, K.; Khashai, F.; Forghany, A.; Krasieva, T.; Wilder-Smith, P. Exploring Mechanisms of Biofilm Removal. Dentistry (Sunnyvale Calif.) 2016, 6, 371. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Matarese, G.; Williams, R.C.; Siciliano, V.I.; Alibrandi, A.; Cordasco, G.; Ramaglia, L. The effects of a desiccant agent in the treatment of chronic periodontitis: A randomized, controlled clinical trial. Clin. Oral Investig. 2018, 22, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.R.; Al-Johani, K.; Fedele, S.; Moles, D.R. Randomised controlled trial of the efficacy of HybenX in the symptomatic treatment of recurrent aphthous stomatitis. Oral Dis. 2009, 15, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Inwood, S. Skin antisepis: Using 2% chlorhexidine gluconate in 70% isopropyl alcohol. Br. J. Nurs. 2007, 16, 1390–1394. [Google Scholar] [CrossRef] [PubMed]
- Janssen, L.M.A.; Tostmann, A.; Hopman, J.; Liem, K.D. 0.2% Chlorhexidine acetate as skin disinfectant prevents skin lesions in extremely preterm infants: A preliminary report. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F97–F100. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-C.; Huang, C.-F.; Shen, L.-J.; Wang, H.-J.; Lin, C.-Y.; Wu, F.-L.L. Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution. J. Formos. Med. Assoc. 2015, 114, 1162–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adé, A.; Chauchat, L.; Frève, J.-F.O.; Gagné, S.; Caron, N.; Bussières, J.-F. Comparison of Decontamination Efficacy of Cleaning Solutions on a Biological Safety Cabinet Workbench Contaminated by Cyclophosphamide. Can. J. Hosp. Pharm. 2017, 70, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, S.K.; Slots, J. Sodium hypochlorite (dilute chlorine bleach) oral rinse in patient self-care. J. West. Soc. Periodontol. Periodontal. Abstr. 2015, 63, 99–104. [Google Scholar] [PubMed]
- Faras, F.; Abo-Alhassan, F.; Sadeq, A.; Burezq, H. Complication of improper management of sodium hypochlorite accident during root canal treatment. J. Int. Soc. Prev. Community Dent. 2016, 6, 493. [Google Scholar] [CrossRef] [PubMed]
- Mayer MPA, P.E. Enterococcus faecalis in Oral Infections. JBR J. Interdiscip. Med. Dent. Sci. 2015, 3, 160. [Google Scholar] [CrossRef]
- Fritschi, B.Z.; Albert-Kiszely, A.; Persson, G.R. Staphylococcus aureus and other bacteria in untreated periodontitis. J. Dent. Res. 2008, 87, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, P.; Gu, J.T.; Zare, E.N.; Ashtari, B.; Moeini, A.; Tay, F.R.; Niu, L. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, P.; Jamaledin, R.; Jabbari, M.; Nikfarjam, N.; Borzacchiello, A. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dent. Mater. 2018, 34, 851–867. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, P.; Ali, G.W.; Della Sala, F.; Abdel-Fattah, W.I.; Borzacchiello, A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr. Polym. 2019, 223, 115023. [Google Scholar] [CrossRef] [PubMed]
- Akca, A.E.; Akca, G.; Topçu, F.T.; Macit, E.; Pikdöken, L.; Özgen, I.Ş. The comparative evaluation of the antimicrobial effect of propolis with chlorhexidine against oral pathogens: An in vitro study. Biomed. Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jurczyk, K.; Nietzsche, S.; Ender, C.; Sculean, A.; Eick, S. In-vitro activity of sodium-hypochlorite gel on bacteria associated with periodontitis. Clin. Oral Investig. 2016, 20, 2165–2173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, R.; Dogra, S. Venous leg ulcer: Topical treatment, dressings and surgical debridement. Indian Dermatol. Online J. 2014, 5, 371. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance standards for antimicrobial susceptibility testing. In CLSI Document M100-S29; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. In CLSI Document M27-4th Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
Species | Sodium Hypochlorite (%) | Chlorhexidine (%) | Hybenx® (%) | |||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
Pseudomonas aeruginosa PAO-1 | 1.6 × 10−1 | 3.0 × 10−1 | 7.8 × 10−4 | 6.3 × 10−3 | 3.9 × 10−1 | 3.9 × 10−1 |
Pseudomonas aeruginosa ATCC 27853 | 1.6 × 10−1 | 3.0 × 10−1 | 1.5 × 10−3 | 3.1 × 10−3 | 3.9 × 10−1 | 3.9 × 10−1 |
Staphylococcus aureus ATCC 29213 | 3.9 × 10−2 | 7.8 × 10−2 | 9.8 × 10−5 | 2.0 × 10−4 | 3.9 × 10−1 | 3.9 × 10−1 |
Staphylococcus aureus ATCC 25923 | 3.9 × 10−2 | 7.8 × 10−2 | 4.9 × 10−5 | 9.8 × 10−5 | 3.9 × 10−1 | 7.8 × 10−1 |
Staphylococcus aureus ATCC 33591 a | 3.9 × 10−2 | 7.8 × 10−2 | 9.8 × 10−5 | 2.0 × 10−4 | 3.9 × 10−1 | 3.9 × 10−1 |
Enterococcus faecalis ATCC 29212 | 7.8 × 10−2 | 1.6 × 10−1 | 3.9 × 10−4 | 7.8 × 10−4 | 3.9 × 10−1 | 3.9 × 10−1 |
Enterococcus faecalis 51299 b | 3.9 × 10−2 | 7.8 × 10−2 | 3.9 × 10−4 | 7.8 × 10−2 | 3.9 × 10−1 | 7.8 × 10−1 |
Escherichia coli ATCC 25922 | 3.9 × 10−2 | 7.8 × 10−2 | 4.9 × 10−5 | 4.9 × 10−5 | 3.9 × 10−1 | 3.9 × 10−1 |
Escherichia coli NCTC 13476 c | 7.8 × 10−2 | 1.6 × 10−1 | 3.9 × 10−4 | 3.9 × 10−4 | 3.9 × 10−1 | 3.9 × 10−1 |
Escherichia coli ATCC 35218 | 3.9 × 10−2 | 7.8 × 10−2 | 9.8 × 10−5 | 2.0 × 10−4 | 3.9 × 10−1 | 3.9 × 10−1 |
Klebsiella pneumoniae ATCC 700603 d | 7.8 × 10−2 | 1.6 × 10−1 | 6.3 × 10−3 | 1.3 × 10−2 | 3.9 × 10−1 | 7.8 × 10−1 |
Klebsiella pneumoniae ATCC 13883 | 7.8 × 10−2 | 1.6 × 10−1 | 1.6 × 10−3 | 3.0 × 10−3 | 3.9 × 10−1 | 3.9 × 10−1 |
Klebsiella pneumoniae CIP 52.145 e | 7.8 × 10−2 | 1.6 × 10−1 | 3.1 × 10−3 | 6.0 × 10−3 | 3.9 × 10−1 | 3.9 × 10−1 |
Acinetobacter baumannii ATCC 17978 | 3.9 × 10−2 | 7.8 × 10−2 | 1.5 × 10−3 | 3.0 × 10−3 | 3.9 × 10−1 | 3.9 × 10−1 |
Enterobacter cloacae ATCC 13047 | 7.8 × 10−2 | 1.6 × 10−1 | 1.9 × 10−4 | 3.9 × 10−4 | 3.9 × 10−1 | 3.9 × 10−1 |
Klebsiella aerogenes ATCC 13048 | 7.8 × 10−2 | 1.6 × 10−1 | 6.3 × 10−3 | 1.3 × 10−2 | 3.9 × 10−1 | 3.9 × 10−1 |
Species | Sodium Hypochlorite (%) | Chlorhexidine (%) | Hybenx® (%) | |||
---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | |
Candida tropicalis ATCC 750 | 3.9 × 10−2 | 3.9 × 10−2 | 3.9 × 10−4 | 7.8 × 10−4 | 7.8 × 10−1 | 7.8 × 10−1 |
Candida krusei ATCC 6258 | 2.0 × 10−2 | 3.9 × 10−2 | 7.8 × 10−4 | 7.8 × 10−4 | 7.8 × 10−1 | 7.8 × 10−1 |
Candida glabrata ATCC 90030 | 2.0 × 10−2 | 2.0 × 10−2 | 7.8 × 10−4 | 3.1 × 10−3 | 1.0 × 10−1 | 7.8 × 10−1 |
Candida auris CBS 12372 | 3.9 × 10−2 | 7.8 × 10−2 | 1.5 × 10−3 | 1.5 × 10−3 | 7.8 × 10−1 | 1.6 × 100 |
Candida auris CBS 10913 | 3.9 × 10−2 | 7.8 × 10−2 | 1.5 × 10−3 | 1.5 × 10−3 | 7.8 × 10−1 | 7.8 × 10−1 |
Candida albicans ATCC 90028 | 3.9 × 10−2 | 3.9 × 10−2 | 7.8 × 10−4 | 7.8 × 10−4 | 7.8 × 10−1 | 1.6 × 100 |
Candida parapsilosis ATCC 22019 | 3.9 × 10−2 | 7.8 × 10−2 | 9.8 × 10−5 | 9.8 × 10−5 | 7.8 × 10−1 | 7.8 × 10−1 |
Candida parapsilosis ATCC 90019 | 3.9 × 10−2 | 7.8 × 10−2 | 3.9 × 10−4 | 7.8 × 10−4 | 7.8 × 10−1 | 7.8 × 10−1 |
Candida parapsilosis ATCC 90018 | 3.9 × 10−2 | 3.9 × 10−2 | 7.8 × 10−4 | 3.1 × 10−3 | 7.8 × 10−1 | 7.8 × 10−1 |
Cryptococcus neoformans ATCC 90112 | 2.0 × 10−2 | 3.9 × 10−2 | 4.9 × 10−5 | 4.9 × 10−5 | 7.8 × 10−1 | 7.8 × 10−1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonelli, A.; Giovannini, L.; Baccani, I.; Giuliani, V.; Pace, R.; Rossolini, G.M. In Vitro Antimicrobial Activity of the Decontaminant HybenX® Compared to Chlorhexidine and Sodium Hypochlorite against Common Bacterial and Yeast Pathogens. Antibiotics 2019, 8, 188. https://doi.org/10.3390/antibiotics8040188
Antonelli A, Giovannini L, Baccani I, Giuliani V, Pace R, Rossolini GM. In Vitro Antimicrobial Activity of the Decontaminant HybenX® Compared to Chlorhexidine and Sodium Hypochlorite against Common Bacterial and Yeast Pathogens. Antibiotics. 2019; 8(4):188. https://doi.org/10.3390/antibiotics8040188
Chicago/Turabian StyleAntonelli, Alberto, Luca Giovannini, Ilaria Baccani, Valentina Giuliani, Riccardo Pace, and Gian Maria Rossolini. 2019. "In Vitro Antimicrobial Activity of the Decontaminant HybenX® Compared to Chlorhexidine and Sodium Hypochlorite against Common Bacterial and Yeast Pathogens" Antibiotics 8, no. 4: 188. https://doi.org/10.3390/antibiotics8040188
APA StyleAntonelli, A., Giovannini, L., Baccani, I., Giuliani, V., Pace, R., & Rossolini, G. M. (2019). In Vitro Antimicrobial Activity of the Decontaminant HybenX® Compared to Chlorhexidine and Sodium Hypochlorite against Common Bacterial and Yeast Pathogens. Antibiotics, 8(4), 188. https://doi.org/10.3390/antibiotics8040188