Novel Small-molecule Antibacterials against Gram-positive Pathogens of Staphylococcus and Enterococcus Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Thienocarbazoles
2.2. In Vitro Antibacterial Activity of the Thienocarbazoles
2.3. In Vivo Antibacterial Activity of Thieno[b]carbazoles
3. Materials and Methods
3.1. Chemical Reagents and Instruments
3.2. Procedure for the Synthesis of Compound Classes 3 and 4
3.3. In Vitro Antibacterial Activity
3.4. In Vivo Antibacterial Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mantravadi, P.K.; Karunakaran, A.K.; Renwick, C.J.; Hudson, A.O.; Parthasarathy, A. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics 2019, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Balloux, F.; van Dorp, L. Q & A: What are pathogens, and what have they done to and for us? BMC Biol. 2017, 15, 91. [Google Scholar]
- Ventola, C.L. The Antibiotic Crisis. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Eades, C.; Highes, S.; Heard, K.; Moore, L. Antimicrobial therapies for Gram-positive infections. Clin. Pharm. 2017, 9, 9. [Google Scholar]
- Kluytmans, J.; van Belkum, A.; Verbrugh, H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar] [CrossRef]
- Agyare, C.; Boamah, V.E.; Zumbi, C.N.; Osei, F.B. Antibiotic Use in Poultry Production and Its Effect on Bacterial Resistance. In Antimicrobial Resistance—A Global Threat; Kumar, Y., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Roth, C. Drug-Filled Rivers Aiding Resistance to Antibiotics. 2019. Available online: http://p.dw.com/p/3JDQZ (accessed on 28 May 2019).
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal transfer antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019, 65, 34–44. [Google Scholar] [CrossRef]
- Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K.; Wolfender, J.L. Metabolite Induction Via Microorganism Co-Cultues: A Potential Way to Enhance Chemical Diversity for Drug Discovery. Biotechnol. Adv. 2014, 32, 1180–1204. [Google Scholar] [CrossRef]
- Tyc, O.; De Jager, V.C.L.; Van Den Berg, M.; Gerards, S.; Janssens, T.K.S.; Zaagman, N.; Kai, M.; Svatos, A.; Zweers, H.; Hordijk, C.; et al. Exploring Bacterial Interspecific Interactions for Discovery of Novel Antimicrobial Compounds. Microb. Biotechnol. 2017, 10, 910–925. [Google Scholar] [CrossRef]
- Tyc, O.; Van Den Berg, M.; Gerads, S.; Van Veen, J.A.; Raaijmakers, J.M.; De Boer, W.; Garbeva, P. Impact of Interspecific Interactions on Antimicrobial Activity among Soil Bacteria. Front. Microbiol. 2014, 5, 567. [Google Scholar] [CrossRef]
- Abdallah, E.M. Plants: An alternative source for antimicrobials. J. Appl. Pharm. Sci. 2011, 1, 16–20. [Google Scholar]
- Choudray, A.; Naughton, L.M.; Montánchez, I.; Dobson, D.W.; Rai, D.K. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar. Drugs 2017, 15, 272. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Patocka, J.; Kuca, K. Insect Antimicrobial Peptides, a Mini Review. Toxins 2018, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, C.; Lai, R. Antimicrobial peptides from amphibians. Biomol. Concepts 2011, 2, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Klahn, P.; Brönstrup, M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat. Prod. Rep. 2017, 34, 832–885. [Google Scholar] [CrossRef]
- Anusionwu, C.G.; Aderibigbe, B.A.; Mbianda, X.Y. Hybrid Molecules Development: A Versatile Landscape for the Control of Antifungal Drug Resistance: A Review. Mini-Rev. Med. Chem. 2019, 19, 450–464. [Google Scholar] [CrossRef]
- Irfan, M.; Aneja, B.; Yadava, U.; Khan, S.I.; Manzoor, N.; Daniliuc, C.G.; Abid, M. Synthesis, QSAR and anticandidal evaluation of 1,2,3-triazoles derived from naturally bioactive scoffolds. Eur. J. Med. Chem. 2015, 93, 246–254. [Google Scholar] [CrossRef]
- Miniyar, P.B.; Mahajan, A.A.; Mokale, S.N.; Shah, M.U.; Kumar, A.S.; Chaturbhuj, G.U. Triazole hybrids as new type of anti-fungal agents. Arab. J. Chem. 2017, 10, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Keri, R.S.; Chand, K.; Budagumpi, S.; Somappa, S.B.; Patil, S.A.; Nagaraja, B.M. An overview of benzo[b]thiophene-based medicinal chemistry. Eur. J. Med. Chem. 2017, 138, 1002–1033. [Google Scholar] [CrossRef]
- Suresha Kumar, T.H.; Mahadevan, K.M.; Hariskumar, H.N.; Padmashali, B.; Naganadowda, G. Synthesis of benzo[b]thiophene substituted carbamates, ureas, semicarbazides, and pyrazoles and their antimicrobial and analgesic activity. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 1856–1879. [Google Scholar]
- Nagesh, H.K.; Padmashali, B.; Sandeep, C.; Yuvaraj, T.C.M.; Siddesh, M.B.; Mallikarjuna, S.M. Synthesis and antimicrobial activity of benzothiophene substituted coumarines, pyrimidines and pyrazole as new scaffold. Int. J. Pharm. Sci. Rev. Res. 2014, 28, 6–10. [Google Scholar]
- Aboulwafaa, U.M.; Berto, F.A.C. Benzo[b]thiophenes, part 1: Synthesis and antimicrobial activity of benzo[b]thienyl-1,3,4-oxadiazole, -1,2,3-triazolinea, and thiazoline derivatives. Arch. Pharm. 1992, 325, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Chawia, R.; Arora, A.; Prameswaran, M.; Shama, P.C.; Michael, S.; Ravi, T.K. Synthesis of novel 1,3,4-oxadiazole derivatives as potential antimicrobial agents. Acta Pol. Pharma. Drug Res. 2010, 67, 247–253. [Google Scholar]
- Singh, T.P.; Singh, O.M. Recent Progress in Biological Activities of Indole and Indole Alkaloids. Mini-Rev. Med. Chem. 2018, 18, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Damit, E.F.; Nordin, N.; Ariffin, A.; Sulaiman, K. Synthesis of Novel Derivatives of Carbazole-Thiophene, Their Electronic Properties, and Computational Studies. J. Chem. 2016, 2016, 9360230. [Google Scholar] [CrossRef]
- De Perio, M.A.; Yarnold, P.R.; Warren, J.; Noskin, G.A. Risk factors and outcomes associated with non-Enterococcus faecalis, non-Enterococcus faecium enterococcal bacterimia. Infect. Control Hosp. Epidemiol. 2006, 27, 28–33. [Google Scholar] [CrossRef]
- Schmidt-Hieber, M.; Blau, I.W.; Schwartz, S.; Uharek, L.; Weist, K.; Eckmanns, T.; Jonas, D.; Rüden, H.; Thiel, E.; Brandt, C. Intensified strategies to control vancomycin-resistant enterococci in immunocompromised patients. Int. J. Hematol. 2007, 86, 158–162. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimocrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24. [Google Scholar] [CrossRef]
- Casper, Y.; Jeanty, M.; Blu, J.; Burchak, O.; Le Pihive, E.; Maigre, L.; Schneider, D.; Jolivalt, C.; Paris, J.-M.; Hequet, A.; et al. Novel synthetic bis-indolic derivatives with antistaphylococcal activity, including against MRDA and VISA strains. J. Antimicrob. Chemother. 2015, 70, 1727–1737. [Google Scholar]
MIC [µg/mL] a | |||||
---|---|---|---|---|---|
Cpd. | R | Staphylococcus aureus | E. faecium | E. faecalis | E. casseliflavus |
3a | H | 8 | 128 | 16 | >128 |
3b | 5-Cl | 4 | 8 | 16 | 8 |
3c | 6-Cl | 8 | 32 | 32 | 16 |
3d | 5-Br | 8 | 8 | 16 | 16 |
3e | 6-Br | - | 64 | 64 | 16 |
3f | 5-CN | 8 | >128 | 32 | 128 |
3g | 6-CN | 4 | >128 | 64 | >128 |
3h | 5-OH | 2 | 16 | 16 | 64 |
3i | 6-OH | 2 | 8 | 16 | 32 |
3j | 5-OBn | 64 | >128 | 128 | 64 |
3k | 6-OBn | 64 | >128 | 128 | 128 |
4a | H | 8 | >128 | 16 | >128 |
4b | 5-Cl | 4 | 8 | 8 | 8 |
4c | 6-Cl | 8 | 8 | 32 | 32 |
4e | 6-Br | 16 | 64 | 32 | 64 |
4f | 5-CN | 4 | >128 | 32 | >128 |
4g | 6-CN | 4 | >128 | 128 | >128 |
4h | 5-OH | 8 | 16 | 32 | 64 |
4i | 6-OH | 2 | 8 | 16 | 32 |
4j | 5-OBn | 64 | >128 | 128 | 64 |
4k | 6-OBn | 32 | >128 | 128 | 128 |
Oxacillin | 1 | - | - | - | |
Ciprofloxacin | - | - | 4 | - | |
Ampicillin | - | >128 | 2 | - | |
Vancomycin | 4 | >128 | 128 | 32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seethaler, M.; Hertlein, T.; Wecklein, B.; Ymeraj, A.; Ohlsen, K.; Lalk, M.; Hilgeroth, A. Novel Small-molecule Antibacterials against Gram-positive Pathogens of Staphylococcus and Enterococcus Species. Antibiotics 2019, 8, 210. https://doi.org/10.3390/antibiotics8040210
Seethaler M, Hertlein T, Wecklein B, Ymeraj A, Ohlsen K, Lalk M, Hilgeroth A. Novel Small-molecule Antibacterials against Gram-positive Pathogens of Staphylococcus and Enterococcus Species. Antibiotics. 2019; 8(4):210. https://doi.org/10.3390/antibiotics8040210
Chicago/Turabian StyleSeethaler, Marius, Tobias Hertlein, Björn Wecklein, Alba Ymeraj, Knut Ohlsen, Michael Lalk, and Andreas Hilgeroth. 2019. "Novel Small-molecule Antibacterials against Gram-positive Pathogens of Staphylococcus and Enterococcus Species" Antibiotics 8, no. 4: 210. https://doi.org/10.3390/antibiotics8040210
APA StyleSeethaler, M., Hertlein, T., Wecklein, B., Ymeraj, A., Ohlsen, K., Lalk, M., & Hilgeroth, A. (2019). Novel Small-molecule Antibacterials against Gram-positive Pathogens of Staphylococcus and Enterococcus Species. Antibiotics, 8(4), 210. https://doi.org/10.3390/antibiotics8040210