Evaluation of a Hydrogel-Based Diagnostic Approach for the Point-of-Care Based Detection of Neisseria gonorrhoeae
Abstract
:1. Introduction
2. Results
2.1. Evaluation of N. gonorrhoeae Diagnostic Primer Pairs
2.2. Optimization of the Hydrogel System and Comparison with RT-PCR Methods
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. DNA Extraction
4.3. Design of Diagnostic Primer Pairs
4.4. Limit of Detection of Primers
4.5. Real Time PCR and Hydrogel Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newman, L.; Rowley, J.; Vander Hoorn, S.; Wijesooriya, N.S.; Unemo, M.; Low, N.; Stevens, G.; Gottlieb, S.; Kiarie, J.; Temmerman, M. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 2015, 10, e0143304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, C.K.; Sweet, R.L. Gonorrhea infection in women: prevalence, effects, screening and management. Int. J. Wom. Hlth. 2011, 3, 197–206. [Google Scholar]
- Bignell, C.; FitzGerald, M. UK National guideline for the management of gonorrhoea in adults, 2011. Int. J. STD AIDS 2011, 22, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Dillon, J.R.; Parti, R.P.; Thakur, S.D. Antibiotic resistance in Neisseria gonorrhoeae: will infections be untreatable in the future? Culture 2015, 35, 1–8. [Google Scholar]
- Unemo, M.; Nicholas, R.A. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 2012, 7, 1401–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. Available online: http://www.who.int/reproductivehealth/publications/rtis/9789241503501/en/ (accessed on 15 January 2018).
- Tabrizi, S.N.; Unemo, M.; Limnios, A.E.; Hogan, T.R.; Hjelmevoll, S.O.; Garland, S.M.; Tapsall, J. Evaluation of six commercial nucleic acid amplification tests for detection of Neisseria gonorrhoeae and other neisseria species. J. Clin. Microbiol. 2011, 49, 3610–3615. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.F.; Hay, P.; Alexander, S.; Capaldi, K.; Dave, J.; Sadiq, S.T.; Ison, C.A.; Planche, T. Positive P redictive value of the becton dickinson VIPER system and the ProbeTec GC Qx assay, in extracted mode, for detection of Neisseria gonorrhoeae. Sex. Transm. Infect. 2010, 86, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Moncada, J.; Clark, C.B.; Holden, J.; Hook III, E.W.; Gaydos, C.A.; Schachter, J. Stability studies on dry swabs and wet mailed swabs for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in aptima assays. J. Clin. Microbiol. 2017, 55, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.M.A.; Doyle, C.J.; Jennison, A.V. Epidemiological typing of Neisseria gonorrhoeae and detection of markers associated with antimicrobial resistance directly from urine samples using next generation sequencing. Sex. Transm. Infect. 2017, 93, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Badman, S.G.; Vallely, L.M.; Toliman, P.; Kariwiga, G.; Lote, B.; Pomat, W.; Holmer, C.; Guy, R.; Luchters, S.; Morgan, C. A novel point-of-care testing strategy for sexually transmitted infections among pregnant women in high-burden settings: results of a feasibility study in Papua New Guinea. BMC Infect. Dis. 2016, 16, 250. [Google Scholar] [CrossRef] [PubMed]
- Makoka, M.H.; Komolafe, O.O. Evaluation of syndromic management of sexually transmitted infections in Blantyre, Malawi. Malawi Med. J. 2004, 16, 9–13. [Google Scholar] [PubMed]
- Guy, R.J.; Causer, L.M.; Klausner, J.F.; Unemo, M.; Toskin, I.; Azzini, A.M.; Peeling, R.W. Performance and operational characteristics of point-of-care tests for the diagnosis of urogenital gonococcal infections. Sex Transm. Infect. 2017, 93, S16–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, A.; Ramogola-Masire, D.; Gaolebale, P.; Moshashane, N.; Sickboy, O.; Duque, S.; Williams, E.; Doherty, K.; Klausner, J.D.; Morroni, C. Prevalence and treatment outcomes of routine Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis testing during antenatal care, Gaborone, Botswana. Sex. Transm. Infect. 2018, 94, 230–235. [Google Scholar] [PubMed]
- Taylor-Robinson, D.; Pallecaros, A.; Horner, P. Diagnosis of some genital-tract infections: part i. an historical perspective. Int. J. STD AIDS 2017, 28, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Gift, T.L.; Pate, M.S.; Hook 3rd, E.W.; Kassler, W.J. The rapid test paradox: when fewer cases detected lead to more cases treated: a decision analysis of tests for Chlamydia trachomatis. Sex. Trasm. Dis. 1999, 26, 232–240. [Google Scholar] [CrossRef]
- Watchirs Smith, L.A.; Hillman, R.; Ward, J.; Whiley, D.M.; Causer, L.; Skov, S.; Donovan, B.; Kaldor, J.; Guy, R. Point-of-care tests for the diagnosis of Neisseria gonorrhoeae infection: a systematic review of operational and performance characteristics. Sex. Transm. Infect. 2013, 89, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Otero-Guerra, L.; Fernandez-Blazquez, A.; Vazquez, F. Rapid diagnosis of sexually trasmitted infections. Enferm. Infecc. Microbiol. Clin. 2017, 35, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Aptima Combo 2® Assay. Available online: https://www.hologic.com/sites/default/files/package-insert/502487-IFU-PI_001_01.pdf. (accessed on 18 January 2018).
- Harding-Esch, E.M.; Nori, A.V.; Hegazi, A.; Pond, M.J.; Okolo, O.; Nardone, A.; Lowndes, C.M.; Hay, P.; Sadiq, S.T. Impact of deploying multiple point-of-care tests with a ‘sample first’ approach on a sexual health clinical care pathway. a service evaluation. Sex. Transm. Infect. 2017, 93, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Ghiasi, M.; Pai, N.P. Point-of-care diagnostics testing in global health: what is the point? Microbe 2015, 10, 103–107. [Google Scholar] [CrossRef]
- Peeling, R.W.; Holmes, K.K.; Mabey, D.; Ronald, A. Rapid tests for sexually transmitted infections (stis): The way forward. Sex. Transm. Infect. 2006, 82, v1–v6. [Google Scholar] [CrossRef] [PubMed]
- Manage, D.P.; Lauzon, J.; Atrazhev, A.; Morrissey, Y.C.; Edwards, A.L.; Stickel, A.J.; Crabtree, H.J.; Pabbaraju, K.; Zahariadis, G.; Yanow, S.K. A miniaturized and integrated gel post pllatform for multiparameter pcr detection of herpes simplex viruses from raw genital swabs. Lab Chip 2012, 12, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J.; Howell, A.; Martin, K.A.; Manage, D.P.; Gordy, W.; Campbell, S.D.; Lam, S.; Jin, A.; Polley, S.D.; Samuel, R.A. A lab-on-chip for malaria diagnosis and surveillance. Malar. J. 2014, 13, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manage, D.P.; Morrissey, Y.C.; Stickel, A.J.; Lauzon, J.; Atrazhev, A.; Acker, J.P.; Pilarski, L.M. On-chip PCR amplification of genomic and viral templates in unprocessed whole blood. Microfluid Nanofluidics 2011, 10, 697–702. [Google Scholar] [CrossRef]
- Vidovic, S.; Caron, C.; Taheri, A.; Thakur, S.D.; Read, T.D.; Kusalik, A.; Dillon, J.A. Using crude whole-genome assemblies of Neisseria gonorrhoeae as a platform for strain analysis: clonal spread of gonorrhea infection in saskatchewan, Canada. J. Clin. Microbiol. 2014, 52, 3772–3776. [Google Scholar] [CrossRef] [PubMed]
- Vidovic, S.; Horsman, G.B.; Liao, M.; Dillon, J.R. Influence of conserved and hypervariable genetic markers on genotyping circulating strains of Neisseria gonorrhoeae. PLoS ONE 2011, 6, e28259. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Helgeson, S.; Gu, W.M.; Yang, Y.; Jolly, A.M.; Dillon, J.R. Comparison of Neisseria gonorrhoeae multiantigen sequence typing and porB sequence analysis for identification of clusters of N. gonorrhoeae isolates. J. Clin. Microbiol. 2009, 47, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Fasth, O.; Fredlund, H.; Limnios, A.; Tapsall, J. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J. Antimicrob. Chemother. 2008, 63, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Gaydos, C.A.; Van Der Pol, B.; Jett-Goheen, M.; Barnes, M.; Quinn, N.; Clark, C.; Daniel, G.E.; Dixon, P.B.; Hook III, E.W. The CT/NG study group. performance of the cepehid CT/NG Xpert rapid pcr test for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 2013, 51, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, S.N.; Unemo, M.; Golparian, D.; Twin, J.; Limnios, A.E.; Lahra, M.; Guy, R. Analytical evaluation of GeneXpert CT/NG, the first genetic point-of-care assay for simultaneous detection of Neisseria gonorrhoeae and Chlamydia trachomatis. J. Clin. Microbiol. 2013, 51, 1945–1947. [Google Scholar] [CrossRef] [PubMed]
- Speers, D.J.; Chua, I.J.; Manuel, J.; Marshall, L. Detection of Neisseria gonorrhoeae and Chlamydia trachomatis from pooled rectal, pharyngeal and urine spciemsn in men who have sex with men. Sex. Transm. Infect. 2018, 94, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Peuchant, O.; de Diego, S.; Le Roy, C.; Frantz-Blancpain, S.; Hocke, C.; Bebear, C.; de Barbeyrac, B. Comparison of Three real-time PCR assays for the detection of chlamydia trachomatis and neisseria gonorrhoeae in young pregnant women. Diagn. Microbiol. Infect. Dis. 2015, 83, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Recommendations for the Laboratory-Based Detection of Chlamydia trachomatis and Neisseria gonorrhoeae—2014. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr6302a1.htm#Tab3 (accessed on 14 December 2017).
- Han, Y.; Yin, Y.-P.; Shi, M.-Q.; Zheng, B.-J.; Zhong, M.-Y.; Hiang, N.; Chen, S.-C.; Chen, X.-S. Evaluation of abbott real-time CT/NG assay for detection of chlamydia trachomatis and Neisseria gonorrhoeae in cervical swabs from female sex workers in China. PLoS ONE 2014, 9, e89658. [Google Scholar]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
Primer ID (product length) | Sequence (5’->3’) a | Target Gene b | No. Targets in FA1090 c | Similar Targets from Commercial NAATs |
---|---|---|---|---|
Primer 2 (208bp) | NGO1620, NGO0469, NGO1126 | 3 | Cobas 4800 CT/NG | |
Forward | TCTGCTTTCTTGGTGGGCGA | |||
Reverse | AGGCGATCCGGAAATGCTGA | |||
Primer 3 (139bp) | NGO05940, NGO06090, NGO06650, NGO1642 | 4 | - | |
Forward | TATGGGGGTTCCTTCGCACC | |||
Reverse | CAGACGGTTGCGGGTTCTTG | |||
Primer 8-3 (132bp) | NGO0773, NGO1200, NGO1703, NGO1137, NGO1164, NGO1262, NGO1641 | 7 | BD ProbeTec GC Qx | |
Forward | CAGAAGCCTACGGACGAGCA | |||
Reverse | CGCATATGCTTTGGCCGCTT | |||
Primer 8-4 (180bp) | NGO0773, NGO1200, NGO1703, NGO1137, NGO1164, NGO1262, NGO1641 | 7 | - | |
Forward | TCACGGATGACCGCAGCATA | |||
Reverse | AGACGCTTCACGCCTTCCTT | |||
Primer13 (138bp) | NGO0773, NGO1137, NGO1703, NGO1164, NGO1200, NGO1262, NGO1641 | 7 | BD ProbeTec GC Qx | |
Forward | GCGTAACGCCGTAGGATTGGA | |||
Reverse | CCCAAGCTTTTCAACCGGTCC | |||
Primer16 (93bp) | NGO1131, NGO1209 | 2 | - | |
Forward | CGGAACAAGCGTTTTTCAGCG | |||
Reverse | TCTTTGGCTTGTCCGGGTGT | |||
Primer 17-1 (73bp) | NGO1638, NGO0487, NGO1108 | 3 | - | |
Forward | TCCGAAACACGCAAACCGAAA | |||
Reverse | TAGCCCGGGTTGGTATTGCC | |||
Primer 17-2 (82bp) | NGO1638, NGO0487, NGO1108 | 3 | - | |
Forward | ACACGCAAACCGAAACCGTC | |||
Reverse | GCGCGGTTTTTGTAATAGCCC | |||
Primer 21-5 (101bp) | NGO1085, NGO1652 | 2 | - | |
Forward | GCACGAAACCCGTCCAATCC | |||
Reverse | CAAGACATGCGGCTATGCGG | |||
Primer 31-2 (188bp) | NGO0480, NGO1113, NGO1631 | 3 | - | |
Forward | AAAATCGCGCCGGGTTTGAA | |||
Reverse | AGCTTATCCGCAGCGGTTCT | |||
Primer 31-3 (275bp) | NGO0480, NGO1113, NGO1631 | 3 | - | |
Forward | AAAAAGCCCGTCGGGTCAGA | |||
Reverse | AACCCGAAGAATCGGAGCCA |
Bacterial Species | No. of Isolates | Positive Amplifications | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 a | 3 | 8-3 b | 8-4 | 13 b | 16 | 17-1 | 17-2 | 21-5 | 31-2 | 31-3 | ||
N. gonorrhoeae | 130 | 129 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 102 |
N. flava | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
N. subfla va | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
N. elongata | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
N. mucosa | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
N. lactamica | 4 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
N. perflava/sicca | 5 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
N. flavescentsc | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
N. polysacchareae | 4 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Other Neisseria species d | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Non-Neisseria species e | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Strain | Melt Curve Temperature (°C) | |||||
---|---|---|---|---|---|---|
Primer Pair 3 a | Primer Pair 17-1 a | Primer Pair 21-5 a | ||||
1× SYBR-Green | 2× SYBR-Green | 1× SYBR-Green | 2× SYBR-Green | 1× SYBR-Green | 2× SYBR-Green | |
WHO-F | 80.49 | 81.52 | 83.90 | 84.64 | 84.05 | 84.84 |
WHO-G | 80.78 | 81.82 | 84.05 | 84.64 | 83.90 | 84.79 |
WHO-K | 80.49 | 81.97 | 84.05 | 84.49 | 84.20 | 84.79 |
WHO-N | 80.63 | 81.82 | 83.90 | 84.49 | 84.05 | 84.79 |
WHO-P | 80.93 | 81.97 | 83.90 | 84.64 | 84.05 | 84.79 |
Isolate Selection | Organisms | Geographic Source | No | References |
---|---|---|---|---|
Panel 1 | N. gonorrhoeae | Saskatchewan | 86 | [26,27] |
USA | 13 | Dillon Culture Collection | ||
China | 8 | [28] | ||
WHO | 10 | [29] | ||
South America and the Caribbean | 28 | Dillon Culture Collection | ||
Non-N. gonorrhoeae b | Canada | 30 | NML a | |
Non-Neisseria species b | Canada | 10 | NML | |
Panel 2 | N. gonorrhoeae | Saskatchewan | 35 | [26,27] |
China | 6 | [28] | ||
South America and the Caribbean | 9 | Dillon Culture Collection | ||
WHO | 5 | [29] | ||
Non-N. gonorrhoeae c | Canada | 2 | NML | |
Non-Neisseria species c | Canada | 3 | NML |
Primer Pair | Method | DNA Conc. (ng/µL) | No N. gonorrhoeae Isolates Identified as per Tm value (n = 50) b | Positive Ct values (n = 50) b | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|
3 | Hydrogel | 50 | 44 | 0 | 88 | 100 |
3 | Hydrogel | 70 | 46 | 33 | 92 | 100 |
3 | Hydrogel | 100 | 50 | 0 | 100 | 100 |
3 | Hydrogel+4× SYBR d | 100 | 50 | 50 | 100 | 100 |
3 | RT-PCR control | 70 | 50 | 50 | 100 | 67 c |
17-1 | Hydrogel | 50 | 50 | 0 | 100 | 100 |
17-1 | Hydrogel | 70 | 50 | 0 | 100 | 100 |
17-1 | Hydrogel | 100 | 50 | 0 | 100 | 100 |
17-1 | RT-PCR control | 70 | 50 | 50 | 100 | 100 |
21-5 | Hydrogel | 50 | 47 | 0 | 94 | 100 |
21-5 | Hydrogel | 70 | 50 | 0 | 100 | 100 |
21-5 | Hydrogel | 100 | 50 | 0 | 100 | 100 |
21-5 | RT-PCR control | 70 | 48 | 49 | 96 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, S.R.; Taheri, A.; Khan, N.H.; Parti, R.P.; Stefura, S.; Skiba, P.; Acker, J.P.; Martin, I.; Kusalik, A.; Dillon, J.-A.R. Evaluation of a Hydrogel-Based Diagnostic Approach for the Point-of-Care Based Detection of Neisseria gonorrhoeae. Antibiotics 2018, 7, 70. https://doi.org/10.3390/antibiotics7030070
Perera SR, Taheri A, Khan NH, Parti RP, Stefura S, Skiba P, Acker JP, Martin I, Kusalik A, Dillon J-AR. Evaluation of a Hydrogel-Based Diagnostic Approach for the Point-of-Care Based Detection of Neisseria gonorrhoeae. Antibiotics. 2018; 7(3):70. https://doi.org/10.3390/antibiotics7030070
Chicago/Turabian StylePerera, Sumudu R, Ali Taheri, Nurul H Khan, Rajinder P Parti, Stephanie Stefura, Pauline Skiba, Jason P Acker, Irene Martin, Anthony Kusalik, and Jo-Anne R Dillon. 2018. "Evaluation of a Hydrogel-Based Diagnostic Approach for the Point-of-Care Based Detection of Neisseria gonorrhoeae" Antibiotics 7, no. 3: 70. https://doi.org/10.3390/antibiotics7030070
APA StylePerera, S. R., Taheri, A., Khan, N. H., Parti, R. P., Stefura, S., Skiba, P., Acker, J. P., Martin, I., Kusalik, A., & Dillon, J. -A. R. (2018). Evaluation of a Hydrogel-Based Diagnostic Approach for the Point-of-Care Based Detection of Neisseria gonorrhoeae. Antibiotics, 7(3), 70. https://doi.org/10.3390/antibiotics7030070